Block Modeling-Guided Graph Convolutional Neural Networks
This repository contains the demo code of the paper:
which has been accepted by AAAI2022.
Dependencies
- Python3.7
- NumPy
- SciPy
- PyTorch
- TensorFlow.keras
Example Usages
Before running the codeļ¼ please unzip the data_geom.zip and make a directory named checkpoint.
python main.py --dataset cora --enhance 3.0 --self_loop 1.5
python main.py --dataset citeseer --enhance 4.0 --self_loop 2.0
python main.py --dataset pubmed --enhance 2.0 --self_loop 3.0
python main.py --dataset squirrel --enhance 2.0 --self_loop 0.0
python main.py --dataset chameleon --enhance 0.8 --self_loop 0.0
python main.py --dataset texas --num_gcn_layers 2 --enhance 1.0 --self_loop 0.0
Please refer to the args.py for more parameters.
Reference
If you make advantage of BM-GCN in your research, please cite the following in your manuscript:
Dongxiao He, et al. "Block Modeling-Guided Graph Convolutional Neural Networks." In AAAI. 2022.
License
Tianjin University