Data Model built using Logistic Regression Algorithm on Python.

Overview

Logistic-Regression

Problem Statement:

Your client is a retail banking institution. Term deposits are a major source of income for a bank.
A term deposit is a cash investment held at a financial institution. Your money is invested for an agreed rate of interest over a fixed amount of time, or term.
The bank has various outreach plans to sell term deposits to their customers such as email marketing, advertisements, telephonic marketing and digital marketing.
Telephonic marketing campaigns still remain one of the most effective way to reach out to people. However, they require huge investment as large call centers are hired to actually execute these campaigns. Hence, it is crucial to identify the customers most likely to convert beforehand so that they can be specifically targeted via call. You are provided with the client data such as : age of the client, their job type, their marital status, etc. Along with the client data, you are also provided with the information of the call such as the duration of the call, day and month of the call, etc. Given this information, your task is to predict if the client will subscribe to term deposit.

Data: You are provided with following files:

  1. train.csv : Use this dataset to train the model. This file contains all the client and call details as well as the target variable “subscribed”. You have to train your model using this file.

  2. test.csv : Use the trained model to predict whether a new set of clients will subscribe the term deposit.

Data Dictionary: Here is the description of all the variables: Variable Definition ID Unique client ID age Age of the client job Type of job marital Marital status of the client education Education level default Credit in default. housing Housing loan
loan Personal loan contact Type of communication month Contact month day_of_week Day of week of contact duration Contact duration campaign number of contacts performed during this campaign to the client pdays number of days that passed by after the client was last contacted previous number of contacts performed before this campaign poutcome outcome of the previous marketing campaign Subscribed(target) has the client subscribed a term deposit?

How good are your predictions?
Evaluation Metric: The Evaluation metric for this competition is accuracy. Solution Checker: You can use solution_checker.xlsx to generate score (accuracy) of your predictions.
This is an excel sheet where you are provided with the test IDs and you have to submit your predictions in the “subscribed” column. Below are the steps to submit your predictions and generate score: a. Save the predictions on test.csv file in a new csv file.
b. Open the generated csv file, copy the predictions and paste them in the subscribed column of solution_checker.xlsx file. c. Your score will be generated automatically and will be shown in Your Accuracy Score column.

You might also like...
A tictactoe where you never win, implemented using minimax algorithm
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

This is an Airport Scheduling Time table implemented using Genetic Algorithm

This is an Airport Scheduling Time table implemented using Genetic Algorithm In this The scheduling is performed on the basisi of that no two Air planes are arriving or departing at the same runway at the same time and day there are total of 4 Airplanes 3 and 3 Runways.

Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

This application solves sudoku puzzles using a backtracking recursive algorithm

This application solves sudoku puzzles using a backtracking recursive algorithm. The user interface is coded with Pygame to allow users to easily input puzzles.

 N Queen Problem using Genetic Algorithm
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated Learning of Cohorts (FLoC) proposal.

A genetic algorithm written in Python for educational purposes.
A genetic algorithm written in Python for educational purposes.

Genea: A Genetic Algorithm in Python Genea is a Genetic Algorithm written in Python, for educational purposes. I started writing it for fun, while lea

Owner
Hemanth Babu Muthineni
Learn>Explore>Innovate
Hemanth Babu Muthineni
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algorithms are allowed. Useful shortcut functions for signing (and validating) dictionaries and URLs.

Artur Barseghyan 39 Jun 10, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

null 19 Oct 11, 2022
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 6, 2022
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p

Ahmed Gad 16 Nov 13, 2022
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

null 0 Oct 21, 2022
Python algorithm to determine the optimal elevation threshold of a GNSS receiver, by using a statistical test known as the Brown-Forsynthe test.

Levene and Brown-Forsynthe: Test for variances Application to Global Navigation Satellite Systems (GNSS) Python algorithm to determine the optimal ele

Nicolas Gachancipa 2 Aug 9, 2022
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

null 1 Mar 9, 2022
Sorting Algorithm Visualiser using pygame

SortingVisualiser Sorting Algorithm Visualiser using pygame Features Visualisation of some traditional sorting algorithms like quicksort and bubblesor

null 4 Sep 5, 2021
🧬 Training the car to do self-parking using a genetic algorithm

?? Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 3, 2023