Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

Overview

CoCa - Pytorch

Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contrastive learning to a conventional encoder / decoder (image to text) transformer, achieving SOTA 91.0% top-1 accuracy on ImageNet with a finetuned encoder.

This repository also chooses to adopt the specific transformer architecture from PaLM, for both the unimodal and multimodal transformers as well as the cross attention blocks (parallel SwiGLU feedforwards)

Yannic Kilcher presentation

Install

$ pip install coca-pytorch

Usage

First install the vit-pytorch for the image encoder, which needs to be pretrained

$ pip install vit-pytorch

Then

import torch

# import vision transformer

from vit_pytorch import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048
)

# do your vision transformer training

vit = Extractor(vit, return_embeddings_only = True)

# extractor will enable it so the vision transformer returns its embeddings

# import CoCa and instantiate it

from coca_pytorch.coca_pytorch import CoCa

coca = CoCa(
    dim = 512,                     # model dimension
    img_encoder = vit,             # vision transformer - image encoder, returning image embeddings as (batch, seq, dim)
    image_dim = 1024,              # image embedding dimension, if not the same as model dimensions
    num_tokens = 20000,            # number of text tokens
    unimodal_depth = 6,            # depth of the unimodal transformer
    multimodal_depth = 6,          # depth of the multimodal transformer
    dim_head = 64,                 # dimension per attention head
    heads = 8,                     # number of attention heads
    caption_loss_weight = 1.,      # weight on the autoregressive caption loss
    contrastive_loss_weight = 1.,  # weight on the contrastive loss between image and text CLS embeddings
).cuda()

# mock text and images

text = torch.randint(0, 20000, (4, 512)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()

# train by giving CoCa your text and images with `return_loss = True`

loss = coca(
    text = text,
    images = images,
    return_loss = True  # set this to True to get the full caption + contrastive loss
)

loss.backward()

# do the above for as much text and images...
# then you can get the caption logits as so

logits = coca(
    text = text,
    images = images
) # (4, 512, 20000)

# and the CLIP-like text and image embeddings as

text_embeds, image_embeds = coca(
    text = text,
    images = images,
    return_embeddings = True
) # (4, 512), (4, 512)

Citations

@inproceedings{Yu2022CoCaCC,
  title   = {CoCa: Contrastive Captioners are Image-Text Foundation Models},
  author  = {Jiahui Yu and Zirui Wang and Vijay Vasudevan and Legg Yeung and Mojtaba Seyedhosseini and Yonghui Wu},
  year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Issues
  • Maybe don't need this rearrange

    Maybe don't need this rearrange

    I think the logits before this line in shape (bsz, length, num_tokens) -> so I don't think here need one more rearrange https://github.com/lucidrains/CoCa-pytorch/blob/25de0b04326d8dc4c6f969e90b4466fc4894835e/coca_pytorch/coca_pytorch.py#L461

    opened by CiaoHe 2
  • why train VIT visual encoder first?

    why train VIT visual encoder first?

    Hi, thanks for sharing this repo. In the CoCA paper, both the visual encoder and text encoder are end-to end trained. But in this repo, the vit is first pretrained then fixed to train CoCa.

    opened by Flowerfan 1
  • Reproducing the results in the paper

    Reproducing the results in the paper

    Thanks for this repo. Curious, is this an independent implementation of the CoCa paper? If yes, did you reproduce any result in the paper to ensure correctness of implementation?

    opened by GKIBMNY 0
  • Generating the caption of a given image

    Generating the caption of a given image

    Hello,

    Thank you for having implemented this model. Have you already implemented some code to generate the caption of a given image? If not, do you have an idea about how you would do it in this particular architecture?

    Thank you in advance.

    opened by claudiogreco 0
Releases(v0.0.6)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 28 Jun 26, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4k Jun 22, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

null 2 Dec 14, 2021
Saeed Lotfi 15 Jun 17, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 113 Jun 19, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 82 Jun 26, 2022
Facebook Research 568 Jun 25, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

null 101 Jun 27, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 2 Feb 20, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 178 Jun 16, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 533 Jun 20, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 72 Jun 10, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 15 Jun 24, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 54 Jun 23, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

null 54 Apr 1, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 1.8k Jun 25, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 238 Jun 30, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

null 193 Jun 15, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 41 Apr 29, 2022