Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

Related tags

Deep Learning cogail
Overview

CoGAIL

Table of Content

Overview

This repository is the implementation code of the paper "Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration"(arXiv, Project, Video) by Wang et al. at Stanford Vision and Learning Lab. In this repo, we provide our full implementation code of training and evaluation.

Installation

  • python 3.6+
conda create -n cogail python=3.6
conda activate cogail
  • iGibson 1.0 variant version for co-gail. For more details of iGibson installation please refer to Link
git clone https://github.com/j96w/iGibson.git --recursive
cd iGibson
git checkout cogail
python -m pip install -e .

Please also download the assets of iGibson (models of the objects, 3D scenes, etc.) follow the instruction. The data should be located at your_installation_path/igibson/data/. After downloaded the dataset, copy the modified robot and humanoid mesh file to this location as follows

cd urdfs
cp fetch.urdf your_installation_path/igibson/data/assets/models/fetch/.
cp camera.urdf your_installation_path/igibson/data/assets/models/grippers/basic_gripper/.
cp -r humanoid_hri your_installation_path/igibson/data/assets/models/.
  • other requirements
cd cogail
python -m pip install -r requirements.txt

Dataset

You can download the collected human-human collaboration demonstrations for Link. The demos for cogail_exp1_2dfq is collected by a pair of joysticks on an xbox controller. The demos for cogail_exp2_handover and cogail_exp3_seqmanip are collected with two phones on the teleoperation system RoboTurk. After downloaded the file, simply unzip them at cogail/ as follows

unzip dataset.zip
mv dataset your_installation_path/cogail/dataset

Training

There are three environments (cogail_exp1_2dfq, cogail_exp2_handover, cogail_exp3_seqmanip) implemented in this work. Please specify the choice of environment with --env-name

python scripts/train.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Evaluation

Evaluation on unseen human demos (replay evaluation):

python scripts/eval_replay.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Trained Checkpoints

You can download the trained checkpoints for all three environments from Link.

Acknowledgement

The cogail_exp1_2dfq is implemented with Pygame. The cogail_exp2_handover and cogail_exp3_seqmanip are implemented in iGibson v1.0.

The demos for robot manipulation in iGibson is collected with RoboTurk.

Code is based on the PyTorch GAIL implementation by ikostrikov (https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.git).

Citations

Please cite Co-GAIL if you use this repository in your publications:

@article{wang2021co,
  title={Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration},
  author={Wang, Chen and P{\'e}rez-D'Arpino, Claudia and Xu, Danfei and Fei-Fei, Li and Liu, C Karen and Savarese, Silvio},
  journal={arXiv preprint arXiv:2108.06038},
  year={2021}
}

License

Licensed under the MIT License

You might also like...
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

 Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Human Action Controller - A human action controller running on different platforms.
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

StyleGAN-Human: A Data-Centric Odyssey of Human Generation
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

CVPR 2021:
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

Comments
  • What's the dataset split for different strategies?

    What's the dataset split for different strategies?

    Hi, could you kindly share how the provided datasets are split according to different strategies?

    For instance, for the 2D-Fetch-Quest task, there're 4 strategies. And the provided dataset (dataset-continuous-info-act) has 200 files. I wonder about the file index range for these 4 strategies.

    Thanks for helping!

    opened by YY-GX 2
  • no such directory your_installation_path/igibson/data/assets/models/grippers/basic_gripper/

    no such directory your_installation_path/igibson/data/assets/models/grippers/basic_gripper/

    I tried to build the environment, but when I run the following command I was told there is no such directory. And then I check the assets downloaded from iGibson official, there is indeed no /model/gripper/ folder.

    cp camera.urdf your_installation_path/igibson/data/assets/models/grippers/basic_gripper/.

    opened by Ricky-Zhu 0
  • Missing mesh for humanoid_hri

    Missing mesh for humanoid_hri

    Hi, when I run the two iGibson experiments (cogail_exp2_handover and cogail_exp3_seqmanip), I got such error messages: <path_to_iGibson>/iGibson/igibson/data/assets/models/humanoid_hri/humanoid_hri_knee.urdf:676: cannot find 'l_finger_collision.obj' in any directory in urdf path

    It seems the meshes for the humanoid are not included in this repo. Could you please upload them or tell us how/where can we get these models? Thanks!

    opened by yuchenmo 1
  • Meshes for the Humanoid experiments

    Meshes for the Humanoid experiments

    Hi,

    I don't see any meshes folder for the URDF files placed in iGibson/igibson/data/assets/models.

    For instance, fetch.urdf line 11 has meshes/base_link.obj. But there is no such folder.

    Where can I get them? Or did I miss something in the instructions?

    Kindly help.

    opened by prasuchit 1
Owner
Jeremy Wang
Ph.D. student, Stanford
Jeremy Wang
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Ilya Kostrikov 3k Dec 31, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

null 54 Dec 6, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 7, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

null 105 Nov 27, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 4, 2023