Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)
Official Tensorflow implementation of Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)
Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko
British Machine Vision Conference (BMVC), 2021
Intro
BDD100K)
Night → Day (Alderdey)
Rainy night → Day (Architecture Our generator has asymmetric structure for editing day→night and night→day. Please refer our paper for details
Envs
git clone https://github.com/jgkwak95/AU-GAN.git
cd AU-GAN
# Create virtual environment
conda create -y --name augan python=3.6.7
conda activate augan
conda install tensorflow-gpu==1.14.0 # Tensorflow 1.14
pip install --no-cache-dir -r requirements.txt
Preparing datasets
Night → Day
Berkeley DeepDrive dataset contains 100,000 high resolution images of the urban roads for autonomous driving.
Rainy night → Day
Alderley dataset consists of images of two domains, rainy night and daytime. It was collected while driving the same route in each weather environment.
Please download datasets and then construct them following ForkGAN
Training
# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
--phase train
--experiment_name alderley_exp
--batch_size 8
--load_size 286
--fine_size 256
--use_uncertainty True
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k
--phase train
--experiment_name bdd_exp
--batch_size 4
--load_size 572
--fine_size 512
--use_uncertainty True
Test
# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
--phase test
--experiment_name alderley_exp
--batch_size 1
--load_size 286
--fine_size 256
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k
--phase test
--experiment_name bdd_exp
--batch_size 1
--load_size 572
--fine_size 512
Additional results
More results in paper and supplementary
Uncertainty map
Citation
If our code is helpful your research, please cite our paper:
@InProceedings{kwak_adverse_2021},
author = {Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok},
title = {Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN},
booktitle = {British Conference of Computer Vision (BMVC)},
month = {November},
year = {2021}
}
Acknowledgments
Our code is bulided upon the ForkGAN implementation.