AllSet
This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subset of datasets used in our experiments.
All codes and script are in the folder src
, and a subset of raw data are provided in folder data
. To run the experiments, please go the the src
folder first.
Enviroment requirement:
This repo is tested with the following enviroment, higher version of torch PyG may also be compatible.
pytorch==1.4.0+cu100
torch-geometric==1.6.3
torch-scatter==2.0.4
Generate dataset from raw data.
To generate PyG or DGL dataset for training, please create the following three folders:
p2root: '../data/pyg_data/hypergraph_dataset_updated/'
p2raw: '../data/AllSet_all_raw_data/'
p2dgl_data: '../data/dgl_data_raw/'
And then unzip the raw data zip file into p2raw
.
Run one single experiment with one model with specified lr and wd:
source run_one_model.sh [dataset] [method] [MLP_hidden_dim] [Classifier_hidden_dim] [feature noise level]
Note that for HAN, please check the readme file in ./src/DGL_HAN/
.
To reproduce the results in Table 2 (with the processed raw data)
source run_all_experiments.sh [method]
Issues
If you have any problem about our code, please open an issue and @ us (or send us an email) in case the notification doesn't work. Our email can be found in the paper.
Citation
If you use our code or data in your work, please cite our paper:
@inproceedings{
chien2022you,
title={You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks},
author={Eli Chien and Chao Pan and Jianhao Peng and Olgica Milenkovic},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=hpBTIv2uy_E}
}