A Structured Self-attentive Sentence Embedding

Overview

Structured Self-attentive sentence embeddings

Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR 2017: https://arxiv.org/abs/1703.03130 .

USAGE:

For binary sentiment classification on imdb dataset run : python classification.py "binary"

For multiclass classification on reuters dataset run : python classification.py "multiclass"

You can change the model parameters in the model_params.json file Other tranining parameters like number of attention hops etc can be configured in the config.json file.

If you want to use pretrained glove embeddings , set the use_embeddings parameter to "True" ,default is set to False. Do not forget to download the glove.6B.50d.txt and place it in the glove folder.

Implemented:

  • Classification using self attention
  • Regularization using Frobenius norm
  • Gradient clipping
  • Visualizing the attention weights

Instead of pruning ,used averaging over the sentence embeddings.

Visualization:

After training, the model is tested on 100 test points. Attention weights for the 100 test data are retrieved and used to visualize over the text using heatmaps. A file visualization.html gets saved in the visualization/ folder after successful training. The visualization code was provided by Zhouhan Lin (@hantek). Many thanks.

Below is a shot of the visualization on few datapoints. alt text

Training accuracy 93.4% Tested on 1000 points with 90.2% accuracy


You might also like...
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Comments
  • Penalization term

    Penalization term

    In the original paper, the penalization term is equal to the Frobenius norm squared. In your implementation you did not consider the power 2. Did you try comparing both cases? frobenius

    opened by moussaKam 6
  • Experiments

    Experiments

    Hello dear @kaushalshetty ,

    I'm trying to run your experiments, but I can get the same results. I made the same changes than webdizz, but the accuracy are always 50%. This default configuration should generate the 93.4% accuracy result?

    Thanks

    opened by heukirne 2
  • about classfication.py

    about classfication.py

    when i run this sentence : classification_type = sys.argv[1] IndexError: list index out of range I don't know how to slove, can you tell me the solution?thanks

    opened by Catherine-HFUT 1
  • How

    How

    Hello,thanks for your codes!I am trying to learn Self-Attention. But cant find the input files, Can you please give the sample input and other required files to run this example ?

    opened by TingEn-Li 1
Owner
Kaushal Shetty
Compute Is All You Need!!!
Kaushal Shetty
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

null 175 Dec 29, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 9, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 6, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
A framework for attentive explainable deep learning on tabular data

?? kendrite A framework for attentive explainable deep learning on tabular data ?? Quick start kedro run ?? Built upon Technology Description Links ke

Marnix Koops 3 Nov 6, 2021