SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

Overview

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks

Molecular interaction networks are powerful resources for the discovery. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN) methods are optimized for prediction on the basis of direct similarity between interacting nodes. In biological networks, however, similarity between nodes that do not directly interact has proved incredibly useful in the last decade across a variety of interaction networks.

Here, we present SkipGNN, it predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions, which we call skip similarity. In contrast to existing GNNs, SkipGNN receives neural messages from two-hop neighbors as well as immediate neighbors in the interaction network and non-linearly transforms the messages to obtain useful information for prediction.

fig1

(Left) Traditionally, an interaction between nodes A and B implies that A and B are similar and vice versa. (Right) In contrast, in molecular interaction networks, directly interacting entities are not necessarily similar, which has been observed in numerous networks, including genetic interaction networks and protein-protein interaction networks.

Install

git clone https://github.com/kexinhuang12345/SkipGNN.git
cd SkipGNN
python setup.py install

Example

python train.py \
    --epochs 15 \
    --lr 5e-4 \
    --batch_size 256 \
    --hidden1 64 \
    --hidden2 16 \
    --hidden_decode1 512 \
    --network_type DTI \
    --data_path '../data/DTI/fold1' \
    --input_type one_hot

You can change the network_type to DTI, DDI, PPI, GDI. Please change the data_path accordingly.

In the paper, we use node2vec to initialize the node attributes. But empirically, we find simple one-hot position encoding is also good for SkipGNN. If you want to reproduce the result, you could put the node2vec embedding generated from this repo under data/DTI/fold1/dti.emb and set --input_type node2vec.

A Jupyter notebook example is provided in DEMO.

Dataset

We provide the dataset in the data folder.

Data Source Description Processing Code
DTI BIOSNAP A drug-target interaction network betweeen 5,018 drugs that target 2,325 proteins with 15,139 interactions. The drugs are from the US market. data_process_DTI.ipynb
DDI BIOSNAP A drug-drug interaction network betweeen 1,514 drugs with 48,514 interactions, which are approved by the FDA. data_process_DDI.ipynb
PPI HuRI A protein-protein interaction network from the Human Reference Protein Interactome Mapping Project. We use the HuRI-III version from the L3 paper. It consists of 5,604 proteins with 23,322 interactions. data_process_PPI.ipynb
GDI DisGeNET A disease-gene association network betweeen 9,413 genes and 10,370 diseases with 81,746 associations, which are curated from GWAS studies. data_process_GDI.ipynb

Skip-Graph Construction

To integrate the power of skip-graph in your own GNN codes, you could simply apply a new GNN on the skip graph, which is generated using two lines. adj is a scipy.sparse adjacency matrix for the original graph.

adj_skip = adj.dot(adj)
adj_skip = adj_skip.sign()

See here for more details.

Cite Us

Cite arxiv for now:

@article{huang2020skipgnn,
  title={SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks},
  author={Huang, Kexin and Xiao, Cao and Glass, Lucas and Zitnik, Marinka and Sun, Jimeng},
  journal={arXiv preprint arXiv:2004.14949},
  year={2020}
}

The code framework is based on pygcn.

Contact

Please send questions to [email protected] or open an issue.

You might also like...
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

 Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Comments
  • The node2vec embedding

    The node2vec embedding

    Hi, Kexin, Thanks for your great work and code. I wonder how you get the node2vec embedding. Is it based on the complete graph or based on the training sub-graph, validation sub-graph, and test sub-graph seperately?

    opened by zhenyuhe00 4
  • Why is there a dropout layer behind GraphConvolution layer?

    Why is there a dropout layer behind GraphConvolution layer?

    Hi, I successfully ran the code and I find the function dropout() behind the function GraphConvolution(). However after checking the technical articles and blogs, I find that dropout() is usually used after fully connected layers, so is it really better than BatchNormalization function in the model?

    opened by qwe1997 1
Owner
Kexin Huang
Health Data Science @ Harvard, prev. NYU Math & CS
Kexin Huang
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

null 212 Dec 25, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

null 72 Nov 27, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

null 158 Dec 15, 2022