Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

Overview

SharinGAN

Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

The official project website for this work can be found here.

Requirements

Python 2.7 Pytorch 0.4.1

The trained model files for both the tasks are made available here here. The pretrained_models folder contains the pretrained model for the generator and the primary task networks before end-to-end training the SharinGAN network as a whole. The final trained models are present in Face_Normal_Estimation/ and Monocular_Depth_Estimation/ directories of the google drive.

The environment.yml file is also provided for one to replicate the environment.

We added the training and validation codes for both the tasks of Monocular Depth Estimation and Face Normal Estimation. We hope to improve the repository with time. We appreciate your inputs and feedback

Monocular Depth Estimation

Place the saved model file (Depth_Estimator_WI_geom_bicubic_da-144999.pth.tar) inside a newly created folder Monocular_Depth_Estimation/saved_models/ of the current repo.

The dataset files required for the dataloaders Kitti_dataloader.py and VKitti_dataloader.py are made available at Monocular_Depth_Estimation/dataset_files/.

Place the Monocular_Depth_Estimation/dataset_files/Kitti/.txt files in the original downloaded kitti/ dataset folder. Similarly place the Monocular_Depth_Estimation/dataset_files/VKitti/.txt files in the original downloaded Virtual_Kitti/ dataset folder.

Make3D evaluation

cd Monocular_Depth_Estimation
python Make3D_validation.py --iter 144999
Comments
  • About Kitti data

    About Kitti data

    Hi, I'm struggling with the Kitti data u used in ur project, can u plz tell me which item did u download from the official Kitti website? Maybe the data u used is Kitti 360? But I didn't find data which is labeled as 2011. Thank you so much for ur help.

    opened by yuehua-Song666 5
  • More details are expected

    More details are expected

    Thanks for your contribution to this topic. Could you provide more details over your code. For example, the version of Pytorch, or a basic sample run using default parameters.

    opened by sudalvxin 3
  • Comparing Different models

    Comparing Different models

    Hi, Could you please tell me how you compared different models? Did you use the same learning rate, number of epochs, Number of decay epochs, image size, optimizer among all models? Also, did you collect test results using the final saved generator or did you use the best results testing all saved generators at different epochs?

    opened by mohammadshahabuddin 1
  • Looking for trained SharinGAN depth estimation model [KITTI]

    Looking for trained SharinGAN depth estimation model [KITTI]

    Hi Koutilya,

    Thanks for your contribution to this topic.

    With the current script published in Git repo, we notice several bugs, and majorly for reproducing the paper results the important details are missing. [as mentioned in #2 also]

    Can you please update us when the trained Sharingan models and/or the bug-free scripts will be available?

    Thank you,

    opened by Akhil-Gurram 1
  • about the Kitti and vkitti dataset

    about the Kitti and vkitti dataset

    Thank you very much for your excellent job and I think it is interesting. I have some trouble about the datasets, although I have download the Kitti and vkitty. Can you give me some help about how to prepare the datasets ?

    opened by hello-trouble 1
  • the trained model for Face_Normal_Estimation

    the trained model for Face_Normal_Estimation

    Hi,

    Great work~

    Could you please share the trained model of Face_Normal_Estimation? I can only find the trained model for Monocular_Depth_Estimation in the Google Driver: https://drive.google.com/drive/folders/1SRznz7AlezF655doEZSAxk_YFSdGGhd4,but nothing for Face_Normal_Estimation.

    Thank you very much~

    opened by reallm 0
  • Questions on the training time

    Questions on the training time

    Thanks for the great work!

    May I ask what is the estimated training time for each stage, i.e., pretraining G, pretraining T, and jointly training G and T, on a single GPU like TITAN or V100? Thanks! : )

    opened by SenZHANG-GitHub 0
Owner
Koutilya PNVR
Koutilya PNVR
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 2, 2023
null 190 Jan 3, 2023
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 8, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 3, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 5, 2023
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 9, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 7, 2023
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

null 210 Dec 18, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

null 151 Dec 28, 2022