Reproduction process of AlexNet

Overview

PaddlePaddle论文复现杂谈

背景

注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。

飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competition/detail/106

不可多得的学习过程中还能搞钱的机会,欢迎大家积极报名。

介绍

目录结构

  • AlexNet-torch: 将pytorch代码中与AlexNet图像分类任务有关的代码抽取出来,用于复现
  • AlexNet-paddle:基于AlexNet-torch进行的AlexNet模型复现。
  • notebook:整理PPT过程中遇到过的一些代码小片段,算是一点小随笔了。

注意:这里为了严格保持对齐的步骤,将数据集中的每个类别对应的图片都装在了同一个文件夹中,但是实际上,使用train_list.txt这种文本的方式去记录训练数据列表,整体训练文件会更加灵活可控一些,更加具体的实现可以参考:PaddleClas中的数据读取部分。

官方模型套件指路。

欢迎贡献

  • 如果您有更多有意思的paddle代码小片段,也欢迎提个pr,上传到notebook文件夹,可以是一些自己实现的骚操作,也可以是一些组合的一些api,也可以是自己在使用过程中觉得有意思的功能。
  • 如果您有更多已经复现的文章或者方法,如果有兴趣提交的话,可以新建一个文件夹,命名为xxxx-paddle,其中xxxx表示复现的算法或者名称,将自己的代码放在该文件夹下,然后提交PR即可。
  • 生命不息,开源不止,感谢您的使用和关注,希望我们可以一起用飞桨划出一个更有意思的时代。
You might also like...
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

 Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

Comments
  • torch2paddle.py提示错误

    torch2paddle.py提示错误

    torch2paddle.py提示错误

    torch2paddle.py中
    
    def transfer():
        input_fp = "resnet50-0676ba61.pth"
        output_fp = "model.pdparams"
        # torch_dict = torch.load(input_fp)['model']
    

    提示

    Traceback (most recent call last):
      File "H:/论文复现0814/ResNet50-livingbody/torch2paddle.py", line 71, in <module>
        transfer()
      File "H:/论文复现0814/ResNet50-livingbody/torch2paddle.py", line 31, in transfer
        torch_dict = torch.load(input_fp)['model']
    KeyError: 'model'
    
    opened by livingbody 0
  • 关于服务端部署预测

    关于服务端部署预测

    我在使用您给的服务端部署示例中,已经走通了全部流程,可是只能输出一个结果 输出如下: {'err_no': 0, 'err_msg': '', 'key': ['class_id', 'confidence', 'left_top', 'right_bottom'], 'value': ['[0]', '[0.92535084]', '[[283.15506, 8.095686]]', '[[636.6692, 391.48724]]'], 'tensors': []} 我做的任务是目标检测,在 infer 中,输出有 4 个 boxes,这里只显示了第一个,我换了一张图也是一样,只会输出第一个 boxes 的结果,输出的这个结果是完全和 infer 对的上的,只是还有几个没有输出。 于是,我打印了 fetch_dict 结果如下: {'concat_5.tmp_0': array([100], dtype=int32), 'concat_6.tmp_0': array([[ 0. , 0.92535084, 283.15506 , 8.095686 , 636.6692 , 391.48724 ]], dtype=float32)} “concat_5.tmp_0” 中的 100 表示预测的结果有 100 个 boxes,“concat_6.tmp_0” 按理说应该有 100 个结果。

    opened by FL77N 1
Owner
https://blog.csdn.net/u012526003
null
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

null 5 Nov 3, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

null 1 Nov 12, 2021
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 ?? reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

null 97 Dec 17, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

null 71 Nov 25, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 2, 2021