Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Overview

Towards Implicit Text-Guided 3D Shape Generation

Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Code for the paper [Towards Implicit Text-Guided 3D Shape Generation], CVPR 2022.

This code is based on IM-Net https://github.com/czq142857/IM-NET-pytorch

Authors: Zhengzhe Liu, Yi Wang, Xiaojuan Qi, Chi-Wing Fu

Installation

Requirements

  • Python 3.8.8
  • Pytorch 1.10.0
  • CUDA 11.3
  • h5py
  • scipy
  • mcubes
  • pytorch_lamb

Data Preparation

OR

  • Download the dataset.

  • unzip it to "generator" folder.

python 2_gather_256vox_16_32_64.py.py 

Pretrained Model

We provide pretrained models for each training step. Still download it here. Put them to "generation/checkpoint/color_all_ae_64/"

Inference

(1) Text-Guided Shape Generation

python main.py --res64 --sample_dir samples/im_ae_out --start 0 --end 7454 --high_resolution

You can generate coarse shapes fast by removing "--high_resolution"

(2) Diversified Generation

python main.py --div --sample_dir samples/im_ae_out --start 0 --end 7454 --high_resolution

Others:

(1) Auto-Encoder

python main.py --ae --sample_dir samples/im_ae_out --start 0 --end 7454

Training Generation Model

sh train.sh

Manipulation

Coming soon.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

You might also like...
ICRA 2021
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

Pytorch implementation for
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

Code for the CVPR2022 paper
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

CVPR2022 paper
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Official code for
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Comments
  • Code to compute the metrics

    Code to compute the metrics

    Good morning, I am currently trying to replicate your results, in terms of the metrics IoU, Inception Score, EMD and Classification Accuracy. For repeatibility reasons, I would like to access the code you have used to compute these metrics. So far, I have not been able to find it in your repository. Therefore, I would like to know if you are going to release this code.

    Thanks, Andrea

    opened by AndreAmaduzzi 0
  • Missing of o2o.model32-199.pth pretrained model

    Missing of o2o.model32-199.pth pretrained model

    Hi, it seems that the provided link for downloading the pre-trained models does not include the model "o2o.model32-199.pth" used by the res64 training phase.

    Is it possible to get access to this pre-trained model? Thanks.

    opened by hopeisme 0
Owner
null
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 4, 2023
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

null 58 Dec 23, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 5, 2023
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

?? Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) ?? If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 4, 2023
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 7, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement ?? We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 3, 2023
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

null 34 Oct 8, 2022