Towards Implicit Text-Guided 3D Shape Generation
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)
Code for the paper [Towards Implicit Text-Guided 3D Shape Generation], CVPR 2022.
This code is based on IM-Net https://github.com/czq142857/IM-NET-pytorch
Authors: Zhengzhe Liu, Yi Wang, Xiaojuan Qi, Chi-Wing Fu
Installation
Requirements
- Python 3.8.8
- Pytorch 1.10.0
- CUDA 11.3
- h5py
- scipy
- mcubes
- pytorch_lamb
Data Preparation
- Download our hdf5_train_new, hdf5_test_new.
OR
-
Download the dataset.
-
unzip it to "generator" folder.
python 2_gather_256vox_16_32_64.py.py
Pretrained Model
We provide pretrained models for each training step. Still download it here. Put them to "generation/checkpoint/color_all_ae_64/"
Inference
(1) Text-Guided Shape Generation
python main.py --res64 --sample_dir samples/im_ae_out --start 0 --end 7454 --high_resolution
You can generate coarse shapes fast by removing "--high_resolution"
(2) Diversified Generation
python main.py --div --sample_dir samples/im_ae_out --start 0 --end 7454 --high_resolution
Others:
(1) Auto-Encoder
python main.py --ae --sample_dir samples/im_ae_out --start 0 --end 7454
Training Generation Model
sh train.sh
Manipulation
Coming soon.
Contact
If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).