Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

Overview

TransGanFormer (wip)

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. It will also contain a bunch of tricks I have picked up building transformers and GANs for the last year or so, including efficient linear attention and pixel level attention.

Install

$ pip install transganformer

Usage

$ transganformer --data ./path/to/data

Citations

@misc{jiang2021transgan,
    title   = {TransGAN: Two Transformers Can Make One Strong GAN}, 
    author  = {Yifan Jiang and Shiyu Chang and Zhangyang Wang},
    year    = {2021},
    eprint  = {2102.07074},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{hudson2021generative,
    title   = {Generative Adversarial Transformers}, 
    author  = {Drew A. Hudson and C. Lawrence Zitnick},
    year    = {2021},
    eprint  = {2103.01209},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
Finding all things on-prem Microsoft for password spraying and enumeration.
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Implementation of Deformable Attention in Pytorch from the paper
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Unofficial PyTorch implementation of Fastformer based on paper
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Comments
  • kmeans_iters in attention

    kmeans_iters in attention

    Hello first at all thank you for taking the time and port all of theses models to pytorch, you are really helping out people like me who have tensorflow as a second language :D

    in line 689 of https://github.com/dorarad/gansformer/blob/main/training/network.py there is a loop over kmeans-iter in the transformerlayer, but i can t find this loop in your implementation of Attention, is it implicitly implemented with these einops - i am sadly not fluent with einops or tensorflow :/

    regards martin

    opened by martinpflaum 0
  • dual_contrast_loss argument - error while training

    dual_contrast_loss argument - error while training

    When trying to train a model, the dual_contrast_loss argument spits up an error on lightweight-gan.py. My guess is that it's not implemented yet.

    At first I thought it was a mismatch (should it be dual_contrastive_loss btw like in lightweight-gan?) but apparently needed to be commented out for training to start successfully.

    Very exciting by the way! Training seems to be super fast, about 28h for 150,000 iterations for a 256p model on my 2080 (although it's a very small dataset). I'll share some closer-to-final results once I have them.

    Best, Theodore.

    opened by TheodoreGalanos 2
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 6, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 115 Dec 9, 2021
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 6, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

null 44 Dec 9, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022