Keras Model Implementation Walkthrough
This guide has a companion blog post.
The Keras Model class is one of the centerpieces of the framework. It encapsulates metric tracking, callbacks, distribution, training loops, various input types, and a wide variety of other training related behavior. This has led to the Model class containing a large volume of code that can be intimidating to sift through.
This guide walks through a simplified model implementation in order to help you understand what model does under the hood. After following along with this guide you will understand how the keras model class achieves the behavior listed above.
The SimplifiedModel can also serve as a starting point for those looking to implement custom models or training loops. A forkable template using the SimplifiedModel class be found on my github at https://github.com/lukewood/ModelWalkthrough.
For the sake of brevity, the class written in this guide subclasses keras.layers.Layer
to leverage some helper functions, such as Keras' __call__
implementation.
Core Implementation
Let's create a basic implementation that supports compile()
, fit()
, predict()
, and eval()
before we introduce distribution strategy, metric tracking, callbacks, and other features.
Note that the SimplifiedModel
class operates as a keras.Model
subclass, overriding the call()
method to produce predictions.
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.optimizers as optimizers
class SimplifiedModel(keras.layers.Layer):
"""SimplifiedModel is a stripped down barebones version of keras.Model."""
def __init__(self, *args, **kwargs):
super(SimplifiedModel, self).__init__(*args, **kwargs)
self.dense = keras.layers.Dense(1)
self.distribute_strategy = tf.distribute.get_strategy()
def compile(self,
optimizer='rmsprop',
loss=None,
metrics=None,
loss_weights=None):
with self.distribute_strategy.scope():
self.optimizer = optimizers.get(optimizer)
self.loss = loss
self.metrics_list = metrics if isinstance(metrics, list) else [metrics]
def call(self, inputs):
return self.dense(inputs)
def predict_step(self, x):
return self(x, training=False)
def train_step(self, data):
x, y = data
# Run forward pass.
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
loss = self.loss(y, y_pred)
for extra_loss in self.losses:
loss += scale_loss_for_distribution(extra_loss)
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
return_metrics = {'loss': loss}
for metric in self.metrics_list:
metric.update_state(y, y_pred, None)
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
"""This simplified version of fit only accepts a TensorFlow dataset.
Args:
dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
encoded vector containing labels
epochs: number of passes to perform over the verbosity
verbose: verbosity of logging during fit
"""
for epoch in range(epochs):
for batch in dataset:
metrics = self.train_step(batch)
metric_str = ', '.join(
[f'{metric_name}: {val}' for metric_name, val in metrics.items()])
# Minimal progress logging implementation
print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
print()
def test_step(self, x, y):
y_pred = self(x, training=False)
loss = self.loss(y, y_pred)
for extra_loss in self.losses:
loss += scale_loss_for_distribution(extra_loss)
return_metrics = {
'loss': loss,
}
for metric in self.metrics_list:
metric.update_state(y, y_pred, None)
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def evaluate(self, dataset):
self.reset_metrics()
metrics_aggregate = []
for xs, ys in dataset:
self.reset_metrics()
metrics_aggregate.append(self.test_step(xs, ys))
if not metrics_aggregate:
raise ValueError('dataset must contain at least one batch of samples. '
f'Received: {dataset}')
result = {}
for k in metrics_aggregate[0]:
result[k] = 0.
for metric_iter in metrics_aggregate:
for k, v in metric_iter.items():
result[k] += v / len(metrics_aggregate)
return result
def predict(self, dataset):
result = []
for xs in dataset:
result.append(self(xs, training=False))
return tf.concat(result, axis=0)
def reset_metrics(self):
for metric in self.metrics_list:
metric.reset_state()
When you first construct a model, it exists in an uncompiled state. In this state the optimizer, compiled metrics, and loss have not yet been created. The compile()
method creates the optimizer, takes a loss function, and creates a reference to a list of metrics. These are all later used in training.
train_step
, predict_step
, and eval_step
all contain the logic to perform a single step of their corresponding methods: fit()
, predict()
, and evaluate()
respectively. Note that while predict_step()
simply invokes call, train_step()
and eval_step()
track loss and metrics.
The simplified model class expects a tf.data.Dataset
as an input to fit()
, predict()
, and evaluate()
. The model offloads the batching behavior to the dataset. To use the model, you'd do something like this:
import numpy as np
import tensorflow.keras.losses as losses
model = SimplifiedModel()
x, y = np.zeros((1000, 10)), np.ones((1000, 1))
ds = tf.data.Dataset.from_tensor_slices((x, y))
# Our model expects the dataset to be batched
ds = ds.batch(10)
ds_test = tf.data.Dataset.from_tensor_slices((x))
ds_test = ds_test.batch(10)
model.compile('sgd',
loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM),
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()]
)
model.build(input_shape=(None, 10))
metrics = model.evaluate(ds)
print('Metrics Before Fit:', metrics)
model.fit(ds, epochs=10, verbose=2)
metrics = model.evaluate(ds)
print('Metrics After Fit:', metrics)
Metrics Before Fit: {'loss':
, 'mean_absolute_percentage_error':
}
epoch: (10/10), loss: 1.4210854715202004e-13, mean_absolute_percentage_error: 0.5994006395339966
Metrics After Fit: {'loss':
, 'mean_absolute_percentage_error':
}
This model class implements our expected behavior, but it's missing some critical logic that keras.Model
implements.
Perhaps most notably, this model does not support distribution.
train_step()
Batched Execution, Compiled Currently we are executing our train_step()
calls one at a time, the train_step()
function is not a compiled tf.function
, and the model does not work the TensorFlow distribution strategies. In this section we will implement all of these performance enhancements and net massive performance gains.
First, we begin by wrapping train_step()
in a compiled function:
class SimplifiedModel(keras.Model):
# ...
def make_train_function(self):
if self.train_function:
return self.train_function
def step_function(model, iterator):
def run_step(data):
outputs = model.train_step(data)
model._train_counter.assign_add(1) # pylint: disable=protected-access
return outputs
data = next(iterator)
outputs = model.distribute_strategy.run(run_step, args=(data,))
return model.distribute_strategy.unwrap(outputs)[0]
def train_function(iterator):
"""Runs a training execution with multiple steps."""
# Autograph cannot infer the return type of undeclared non-Tensor
# variables from inside loops. The limitations documentation explains this
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
names = [m.name for m in self.metrics_list] + ['loss']
outputs = dict.fromkeys(names, 0.)
for _ in tf.range(self.steps_per_execution):
outputs = step_function(self, iterator)
return outputs
train_function = tf.function(train_function, experimental_relax_shapes=True)
# A separate function is needed to prevent self-referential
# infinitely-recursive closures
cluster_train_function = None
if self._cluster_coordinator:
# pylint: disable=g-long-lambda
cluster_train_function = lambda it: self._cluster_coordinator.schedule(
train_function, args=(it,))
self.train_function = cluster_train_function or train_function
return self.train_function
This function also runs the train_step()
function using the model's provided distribution strategy.
Next, we need to update our fit()
method to utilize this new train function:
def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
"""This simplified version of fit only accepts a TensorFlow dataset.
Args:
dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
encoded vector containing labels
epochs: number of passes to perform over the verbosity
verbose: verbosity of logging during fit
"""
if self.distribute_strategy._should_use_with_coordinator: # pylint: disable=protected-access
self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
self.distribute_strategy)
dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)
for epoch in range(epochs):
iterator = iter(dataset)
for step in range(0, steps_per_epoch, self.steps_per_execution):
try:
# returns {'loss': loss, 'metric1': val1, ...}
metrics = self.train_function(iterator)
metric_str = ', '.join(
[f'{metric_name}: {val}' for metric_name, val in metrics.items()])
print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
except tf.errors.OutOfRangeError:
break
print()
Next, we will implement computation batching. By batching computation, we reduce the number of context transfers between the computation host and the python side callbacks. In the Keras model class this is done by the steps_per_execution
parameter passed to the compile()
method.
First, we need to update compile()
to include this new parameter:
def compile(self,
optimizer='rmsprop',
loss=None,
metrics=None,
loss_weights=None,
weighted_metrics=None,
steps_per_execution=1):
# We need to compile the loss and metrics within the strategy scope
with self.distribute_strategy.scope():
self.steps_per_execution = steps_per_execution
...
Keras Callbacks
Keras callbacks are objects that perform actions at various stages of training. There is a large library of existing callbacks to handle things like:
- Write TensorBoard logs after every batch of training to monitor your metrics
- Periodically save your model to disk
- Do early stopping
- Get a view on internal states and statistics of a model during training
- ...and more
You can read more about callbacks here: https://keras.io/api/callbacks/
Let's integrate Keras callbacks into our SimplifiedModel class.
In order to do so, we will need to add a callbacks parameter to our fit()
method. Additionally, we will wrap the callbacks
into a Keras CallbackList
:
def fit(
self,
dataset,
epochs=1,
verbose=1,
steps_per_epoch=sys.maxsize, # default to max to iterate entire dataset
callbacks=None):
"""This simplified version of fit only accepts a TensorFlow dataset.
Args:
dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
encoded vector containing labels
epochs: number of passes to perform over the verbosity
verbose: verbosity of logging during fit
steps_per_epoch: number of steps that counts as an epoch, useful with
endless datasets. When using a finite dataset, leave as sys.maxsize.
callbacks: list of Keras callbacks
"""
callbacks = callbacks_module.CallbackList(
callbacks,
add_history=True,
add_progbar=verbose != 0,
model=self,
verbose=verbose,
epochs=epochs)
dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)
if self.distribute_strategy._should_use_with_coordinator: # pylint: disable=protected-access
self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
self.distribute_strategy)
dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)
self.make_train_function()
self._train_counter.assign(0)
callbacks.on_train_begin()
for epoch in range(epochs):
iterator = iter(dataset)
callbacks.on_epoch_begin(epoch)
for step in range(0, steps_per_epoch, self.steps_per_execution):
callbacks.on_train_batch_begin(step)
try:
# returns {'loss': loss, 'metric1': val1, ...}
unused_metrics = self.train_function(iterator)
except tf.errors.OutOfRangeError:
break
callbacks.on_train_batch_end(step)
callbacks.on_epoch_end(epoch, None)
We can now pass any Keras callbacks to fit()
and have it behave as expected. Additionally, we now get the Keras progress bar when running fit.
Final Usage, Recap
The final code for the SimplifiedModel class is available below:
"""SimplifiedModel is a barebones Keras model class.
The intended use of this class is for end users to fork this class and replace
`compile()`, `fit()` and `predict()` with their own logic.
"""
import sys
import tensorflow as tf
class SimplifiedModel(tf.keras.layers.Layer):
"""SimplifiedModel is a stripped down barebones version of keras.Model."""
def __init__(self, *args, **kwargs):
super(SimplifiedModel, self).__init__(*args, **kwargs)
self.dense = tf.keras.layers.Dense(1)
self.distribute_strategy = tf.distribute.get_strategy()
agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg, trainable=False)
self._cluster_coordinator = None
if self.distribute_strategy._should_use_with_coordinator:
self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
self.distribute_strategy)
def compile(self,
optimizer='rmsprop',
loss=None,
metrics=None,
loss_weights=None,
weighted_metrics=None,
steps_per_execution=1):
# We need to compile the loss and metrics within the strategy scope
with self.distribute_strategy.scope():
self.optimizer = optimizers.get(optimizer)
self.loss = loss
self.metrics_list = metrics if isinstance(metrics, list) else [metrics]
self.steps_per_execution = steps_per_execution
self.train_function = None
self._is_compiled = True
def call(self, inputs):
return self.dense(inputs)
def predict_step(self, x):
return self(x, training=False)
def train_step(self, data):
x, y = data
# Run forward pass.
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
loss = self.loss(y, y_pred)
for extra_loss in self.losses:
loss += scale_loss_for_distribution(extra_loss)
# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
# Collect metrics to return
return_metrics = {'loss': loss}
for metric in self.metrics:
metric.update_state(y, y_pred, None)
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def fit(
self,
dataset,
epochs=1,
verbose=1,
steps_per_epoch=sys.maxsize, # default to max to iterate entire dataset
callbacks=None):
"""This simplified version of fit only accepts a TensorFlow dataset.
Args:
dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
encoded vector containing labels
epochs: number of passes to perform over the verbosity
verbose: verbosity of logging during fit
steps_per_epoch: number of steps that counts as an epoch, useful with
endless datasets. When using a finite dataset, leave as sys.maxsize.
callbacks: list of Keras callbacks
"""
callbacks = tf.keras.callbacks.CallbackList(
callbacks,
add_history=True,
add_progbar=verbose != 0,
model=self,
verbose=verbose,
epochs=epochs)
dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)
if self.distribute_strategy._should_use_with_coordinator: # pylint: disable=protected-access
self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
self.distribute_strategy)
dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)
self.make_train_function()
self._train_counter.assign(0)
callbacks.on_train_begin()
for epoch in range(epochs):
iterator = iter(dataset)
callbacks.on_epoch_begin(epoch)
for step in range(0, steps_per_epoch, self.steps_per_execution):
callbacks.on_train_batch_begin(step)
try:
# returns {'loss': loss, 'metric1': val1, ...}
unused_metrics = self.train_function(iterator)
except tf.errors.OutOfRangeError:
break
callbacks.on_train_batch_end(step)
callbacks.on_epoch_end(epoch, None)
def make_train_function(self):
if self.train_function:
return self.train_function
def step_function(model, iterator):
def run_step(data):
outputs = model.train_step(data)
model._train_counter.assign_add(1) # pylint: disable=protected-access
return outputs
data = next(iterator)
outputs = model.distribute_strategy.run(run_step, args=(data,))
return model.distribute_strategy.unwrap(outputs)[0]
def train_function(iterator):
"""Runs a training execution with multiple steps."""
# Autograph cannot infer the return type of undeclared non-Tensor
# variables from inside loops. The limitations documentation explains this
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
names = [m.name for m in self.metrics] + ['loss']
outputs = dict.fromkeys(names, 0.)
for _ in tf.range(self.steps_per_execution):
outputs = step_function(self, iterator)
return outputs
train_function = tf.function(train_function, experimental_relax_shapes=True)
# A separate function is needed to prevent self-referential
# infinitely-recursive closures
cluster_train_function = None
if self._cluster_coordinator:
# pylint: disable=g-long-lambda
cluster_train_function = lambda it: self._cluster_coordinator.schedule(
train_function, args=(it,))
self.train_function = cluster_train_function or train_function
return self.train_function
def test_step(self, x, y):
y_pred = self(x, training=False)
loss = self.loss(y, y_pred)
for extra_loss in self.losses:
loss += scale_loss_for_distribution(extra_loss)
return_metrics = {
'loss': loss,
}
for metric in self.metrics:
metric.update_state(y, y_pred, None)
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def evaluate(self, dataset):
self.reset_metrics()
metrics_aggregate = []
for xs, ys in dataset:
self.reset_metrics()
metrics_aggregate.append(self.test_step(xs, ys))
if not metrics_aggregate:
raise ValueError('dataset must contain at least one batch of samples. '
f'Received: {dataset}')
result = {}
for k in metrics_aggregate[0]:
result[k] = 0.
for metric_iter in metrics_aggregate:
for k, v in metric_iter.items():
result[k] += v / len(metrics_aggregate)
return result
def predict(self, dataset):
result = []
for xs in dataset:
result.append(self(xs, training=False))
return tf.concat(result, axis=0)
def reset_metrics(self):
for metric in self.metrics_list:
metric.reset_state()
Below is an example use of the SimplifiedModel class:
import numpy as np
import tensorflow.keras.losses as losses
try:
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
print("Using OneDeviceStrategy")
except:
strategy = tf.distribute.get_strategy()
print("Using", strategy)
# Make sure to create all `tf.Variable`s under the `scope`.
with strategy.scope():
model = SimplifiedModel()
x, y = np.zeros((1000, 10)), np.ones((1000, 1))
ds = tf.data.Dataset.from_tensor_slices((x, y))
# Our model expects the dataset to be batched
ds = ds.batch(10)
ds_test = tf.data.Dataset.from_tensor_slices((x))
ds_test = ds_test.batch(10)
model.compile('sgd',
loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM),
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()],
steps_per_execution=5
)
metrics = model.evaluate(ds)
print('Metrics Before Fit:', metrics)
model.fit(ds, epochs=10, verbose=2)
# we can go ahead and predict some values
y_pred = model.predict(ds_test)
print('Predictions Shape:', y_pred.shape)
metrics = model.evaluate(ds)
print('Metrics After:', metrics)
Using OneDeviceStrategy
Metrics Before Fit: {'loss':
, 'mean_absolute_percentage_error':
}
Epoch 1/10
101/101 - 1s - 538ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 214ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 220ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 213ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 248ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 251ms/epoch - 2ms/step
Predictions Shape: (1000, 1)
Metrics After: {'loss':
, 'mean_absolute_percentage_error':
}
%%timeit
model.fit(ds, epochs=10, verbose=2)
Epoch 1/10
101/101 - 0s - 482ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 276ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 255ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 219ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 243ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 222ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 280ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 229ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 269ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 275ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 233ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 239ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 230ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 237ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 250ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 247ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 274ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 261ms/epoch - 3ms/step
Epoch 1/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 2/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 281ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 263ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 251ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 271ms/epoch - 3ms/step
1 loop, best of 5: 3.02 s per loop
As you can see, model.fit()
now runs significantly faster than it did before implementing our performance enhancements.
Conclusion
The keras.Model
class contains a encapsulates set of functionality related to training. Due to this, the lifecycle of the keras.Model
class is significantly complex.
The SimplifiedModel
class we implemented shows how the core functionality of the keras.Model
works, while still remaining terse and readable. while the SimplifiedModel
class is missing a large portion of the true keras.Model
class's functionality, it is still as useful starting point for implementing custom training loops that work with TensorFlow distribution strategies.
A forkable template using the SimplifiedModel
class is available at https://github.com/lukewood/ModelWalkthrough.