Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Overview

Deep Generative Model for Robust Imbalance Classification

Deep Generative Model for Robust Imbalance Classification

Xinyue Wang, Yilin Lyu, Liping Jing

This is the official implementation of DGC.

[Paper Link] [PDF]

Abstract

Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications including computer vision. The existing classification methods usually suffer from the limitation of data especially the minority classes, and result in unstable prediction and low performance. In this paper, a deep generative classifier is proposed to mitigate this issue via both data perturbation and model perturbation. Specially, the proposed generative classifier is modeled by a deep latent variable model where the latent variable aims to capture the direct cause of target label. Meanwhile, the latent variable is represented by a probability distribution over possible values rather than a single fixed value, which is able to enforce uncertainty of model and lead to stable prediction. Furthermore, this latent variable, as a confounder, affects the process of data (feature/label) generation, so that we can arrive at well-justified sampling variability considerations in statistics, and implement data perturbation. Extensive experiments have been conducted on widely-used real imbalanced image datasets. By comparing with the state-of-the-art methods, experimental results demonstrate the superiority of our proposed model on imbalance classification task.

arch

Requirement

The code was tested on:

  • python=3.7
  • tensorflow=1.14.0
  • torchvision=0.4.1 (utilizd for dataset preparation)

Usage

usage: python run.py [-h] [--exp EXP] [--seed SEED]

optional arguments:
  -h, --help   show this help message and exit
  --exp EXP    dataset [mnist/fashion/celeba/svnh]
  --seed SEED  random seed for imbalance data generation

The dataset will be automatically downloaded and prepared in ./data when first run.

Citation

@InProceedings{Wang_2020_CVPR,
author = {Wang, Xinyue and Lyu, Yilin and Jing, Liping},
title = {Deep Generative Model for Robust Imbalance Classification},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

License

MIT

You might also like...
Official implementation of the ICLR 2021 paper
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Official pytorch implementation of paper
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

This is the official PyTorch implementation of the paper
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

Owner
null
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

null 43 Oct 14, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) --> xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 1, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 5, 2023
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

null 101 Nov 25, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

null 49 Nov 23, 2022