Final project for Intro to CS class.

Overview

Financial Analysis Web App

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

1. Project Description

This project is a technical analysis web app made using the Streamlit framework. It allows for a user to perform various analysis methods given a ticker and input parameters. The following indicators are supported: Moving Average, Exponential Moving Average, and Moving Average Convergence Divergence. Additionally, a function to plot Moving Average crossovers of user provided windows is also provided (extra credit?). The app allows for charts with the range of current date and up to 999 days in the past.

2. Project Selection

I chose this project as I enjoy analyzing stock data and wanted to learn more about making a web app with visualizations. Through making this app, I learned the basics of web app development and how to use various frameworks. Additionally, I leveraged Python libraries and APIs to collect stock data. I learned how to develop a data collection and analysis pipeline using a stock data API. Finally, I learned how to apply Classes to a real world application through this project.

3. Future Considerations

If I had an opportunity to redo this project, I would make the visualizations more robust by allowing for user manipulation. Further, in order to improve performance and memory, I would implement a caching feature to prevent unnecessary API calls. These changes would be made in order to improve the quality of the data visualizations and provide a long term solution for this web app given the limitations of the free API. Further, I would use a more robust API as the current one is limited in number of calls and does not adjust historic data for stock split prices.

4. How to Run the Web App

The web app is currently hosted on the Streamlit servers at the following URL:

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

No additional setup or changes should be needed in order for the app to run.

How to Use the Web App

To start, enter a ticker in the text box in the sidebar (if the sidebar is not visible, press the arrow in the top left corner). SPY is set as the default value if no input is provided. Next, select the type of Technical Analysis you would like to do. Depending on the selection, a set of parameters will be provided below. Next, provide the delta value, which is the number of days from the current day to collect data on. The application will pull the daily adjusted closing values of the provided ticker. Next, adjust the sliders for the given Technical Analysis selection. There are default values for some TAs. In order to revert them, select a different dropdown item and select the original again.

Please wait ~1 second after hitting 'Run' for the app the update.

API Limitations: due to the limitations of the (free) API, historic stock price data is NOT retroactively updated for stock splits.

NOTE: please enter logical selections, if a specific chart is not possible, the system will not graph the line. Hit 'Run' to create a new graph after updating the inputs.

If an incorrect ticker is provided, the system will display an error message. In order to clear this, provide valid inputs in the sidebar and hit 'Run' again.

5. Challenges

The main challenge of this project was finding and using an appropriate framework. Having tried Flask and Django before settling on Streamlit, the process of creating a web app can be very tedious. Further, creating and setting up the proper logic was difficult as I had to account for various user inputs and selections, without having the entire page crash. One of the biggest issues I faced was a proper implementation of updating the sidebar fields given the user selection. I overcame these issues by implementing a Streamlit form in order to prevent user inputs from conflicting with each other.

6. Cited Sources

The official documentations of the Streamlit, Alpaca, and numpy APIs were extensively used. The Streamlit documentation greatly helped in the formulation of the web app elements and implementation of the logic. The Alpaca Markets API and documentation was used in order to pull market data. Finally, the third resource was used to assist in the creation of moving average plots from stock data.

https://docs.streamlit.io/

https://alpaca.markets/docs/

https://www.datacamp.com/community/tutorials/moving-averages-in-pandas

Description of Files

webApp.py

Main web app driver file. Contains the page objects and form logic.

tradingMethods.py

Class to perform the technical analysis functions. Takes in ticker, deltas, and related features.

config.py

Holds references to API keys.

requirements.txt

Necessary Python libraries.

You might also like...
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Code, final versions, and information on the Sparkfun Graphical Datasheets
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.

Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Owner
Mayur Khanna
Biomedical Informatics M.S. Candidate at University of Chicago | Python | JavaScript | Bioinformatics
Mayur Khanna
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 2, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 6, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learning.

Manasi Sharma 2 Sep 27, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021