MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning
This repo hosts the code for MetaXL, published at NAACL 2021.
[MetaXL: Meta Representation Transformation for Low- resource Cross-lingual Learning] (https://arxiv.org/pdf/2104.07908.pdf)
Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee, Milad Shokouhi, Graham Neubig, Ahmed Hassan Awadallah
NAACL 2021
MetaXL is a meta-learning framework that learns a main model and a relatively small structure, called representation transformation network (RTN) through a bi-level optimization procedure with the goal to transform representations from auxiliary languages such that it benefits the target task the most.
Data
Please download [WikiAnn] (https://github.com/afshinrahimi/mmner), [MARC] (https://registry.opendata.aws/amazon-reviews-ml/), [SentiPers] (https://github.com/phosseini/sentipers) and [Sentiraama] (https://ltrc.iiit.ac.in/showfile.php?filename=downloads/sentiraama/) on its corresponding. Please refer to data/data_index.txt
for data splits.
Scripts
The following script shows how to run metaxl on the named entity recognition task on Quechua.
python3 mtrain.py \
--data_dir data_dir \
--bert_model xlm-roberta-base \
--tgt_lang qa \
--task_name panx \
--train_max_seq_length 200 \
--max_seq_length 512 \
--epochs 20 \
--batch_size 10 \
--method metaxl \
--output_dir output_dir \
--warmup_proportion 0.1 \
--main_lr 3e-05 \
--meta_lr 1e-06 \
--train_size 1000\
--target_train_size 100 \
--source_languages en \
--source_language_strategy specified \
--layers 12 \
--struct perceptron \
--tied \
--transfer_component_add_weights \
--tokenizer_dir None \
--bert_model_type ori \
--bottle_size 192 \
--portion 2 \
--data_seed 42 \
--seed 11 \
--do_train \
--do_eval
The following script shows how to run metaxl on the sentiment analysis task on fa.
python3 mtrain.py \
--data_dir data_dir \
--task_name sent \
--bert_model xlm-roberta-base \
--tgt_lang fa \
--train_max_seq_length 256 \
--max_seq_length 256 \
--epochs 20 \
--batch_size 10 \
--method metaxl \
--output_dir ${output_dir} \
--warmup_proportion 0.1 \
--main_lr 3e-05 \
--meta_lr 1e-6 \
--train_size 1000 \
--target_train_size 100 \
--source_language_strategy specified \
--source_languages en \
--layers 12 \
--struct perceptron \
--tied \
--transfer_component_add_weights \
--tokenizer_dir None \
--bert_model_type ori \
--bottle_size 192 \
--portion 2 \
--data_seed 42 \
--seed 11 \
--do_train \
--do_eval
Citation
If you find MetaXL useful, please cite the following paper
@inproceedings{xia2021metaxl,
title={MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning},
author={Mengzhou, Xia and Zheng, Guoqing and Mukherjee, Subhabrata and Shokouhi, Milad and Newbig, Graham and Awadallah, Ahmed Hassan},
journal={NAACL},
year={2021},
}
This repository is released under MIT License. (See LICENSE)