Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Overview

Neural Circuit Policies Enabling Auditable Autonomy

DOI

Online access via SharedIt

Neural Circuit Policies (NCPs) are designed sparse recurrent neural networks based on the LTC neuron and synapse model loosely inspired by the nervous system of the organism C. elegans. This page is a description of the Keras (TensorFlow 2 package) reference implementation of NCPs. For reproducibility materials of the paper see the corresponding subpage.

alt

Installation

Requirements:

  • Python 3.6
  • TensorFlow 2.4
  • (Optional) PyTorch 1.7
pip install keras-ncp

Update January 2021: Experimental PyTorch support added

With keras-ncp version 2.0 experimental PyTorch support is added. There is an example on how to use the PyTorch binding in the examples folder and a Colab notebook linked below. Note that the support is currently experimental, which means that it currently misses some functionality (e.g., no plotting, no irregularly sampled time-series,etc. ) and might be subject to breaking API changes in future updates.

Breaking API changes between 1.x and 2.x

The TensorFlow bindings have been moved to the tf submodule. Thus the only breaking change regarding the TensorFlow/Keras bindings concern the import

# Import shared modules for wirings, datasets,...
import kerasncp as kncp
# Import framework-specific binding
from kerasncp.tf import LTCCell      # Use TensorFlow binding
(from kerasncp.torch import LTCCell  # Use PyTorch binding)

Colab notebooks

We have created a few Google Colab notebooks for an interactive introduction to the package

Usage: the basics

The package is composed of two main parts:

  • The LTC model as a tf.keras.layers.Layer or torch.nn.Module RNN cell
  • An wiring architecture for the LTC cell above

The wiring could be fully-connected (all-to-all) or sparsely designed using the NCP principles introduced in the paper. As the LTC model is expressed in the form of a system of ordinary differential equations in time, any instance of it is inherently a recurrent neural network (RNN).

Let's create a LTC network consisting of 8 fully-connected neurons that receive a time-series of 2 input features as input. Moreover, we define that 1 of the 8 neurons acts as the output (=motor neuron):

from tensorflow import keras
import kerasncp as kncp
from kerasncp.tf import LTCCell

wiring = kncp.wirings.FullyConnected(8, 1)  # 8 units, 1 motor neuron
ltc_cell = LTCCell(wiring) # Create LTC model

model = keras.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, 2)), # 2 input features
        keras.layers.RNN(ltc_cell, return_sequences=True),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01), loss='mean_squared_error'
)

We can then fit this model to a generated sine wave, as outlined in the tutorials (open in Google Colab).

alt

More complex architectures

We can also create some more complex NCP wiring architecture. Simply put, an NCP is a 4-layer design vaguely inspired by the wiring of the C. elegans worm. The four layers are sensory, inter, command, and motor layer, which are sparsely connected in a feed-forward fashion. On top of that, the command layer realizes some recurrent connections. As their names already indicate, the sensory represents the input and the motor layer the output of the network.

We can also customize some of the parameter initialization ranges, although the default values should work fine for most cases.

ncp_wiring = kncp.wirings.NCP(
    inter_neurons=20,  # Number of inter neurons
    command_neurons=10,  # Number of command neurons
    motor_neurons=5,  # Number of motor neurons
    sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
    inter_fanout=5,  # How many outgoing synapses has each inter neuron
    recurrent_command_synapses=6,  # Now many recurrent synapses are in the
    # command neuron layer
    motor_fanin=4,  # How many incoming synapses has each motor neuron
)
ncp_cell = LTCCell(
    ncp_wiring,
    initialization_ranges={
        # Overwrite some of the initialization ranges
        "w": (0.2, 2.0),
    },
)

We can then combine the NCP cell with arbitrary keras.layers, for instance to build a powerful image sequence classifier:

height, width, channels = (78, 200, 3)

model = keras.models.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, height, width, channels)),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(32, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(64, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(keras.layers.Flatten()),
        keras.layers.TimeDistributed(keras.layers.Dense(32, activation="relu")),
        keras.layers.RNN(ncp_cell, return_sequences=True),
        keras.layers.TimeDistributed(keras.layers.Activation("softmax")),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01),
    loss='sparse_categorical_crossentropy',
)
@article{lechner2020neural,
  title={Neural circuit policies enabling auditable autonomy},
  author={Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu},
  journal={Nature Machine Intelligence},
  volume={2},
  number={10},
  pages={642--652},
  year={2020},
  publisher={Nature Publishing Group}
}
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Releases(v2.0.0)
Owner
PhD candidate at IST Austria. Working on Machine Learning, Robotics, and Verification
null
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 922 Dec 10, 2021
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 4, 2021
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet ?? ???? 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

null 1.1k Dec 27, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022