Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Overview

Neuron class

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm. This class is suitable for prediction on time series.

Dependencies

Neuron class needs pandas and numpy to work propertly.

Example of usage

Consider Y are targets and X are inputs.

## LNUGD

neuron = LNUGD()
prediction = 1
yn, w, e, Wall, MSE = neuron.train(Y_train, X_train, epochs=2, prediction=prediction)
yn, w, Wall, MSE, e = neuron.countSerie(Y, X, logging=False, prediction=prediction)

QNULM

neuron = QNULM()
prediction = 1
yn, w, e, Wall, MSE = neuron.train(Y_train, X_train, epochs=10, prediction=prediction)
yn, w, MSE, e = neuron.countSerie(Y, X, logging=False, prediction=prediction)

RBF

neuron = RBF()
prediction = 1
neuron.train(Y_train, X_train, prediction=prediction)
yn = neuron.count(Y,X, logging=True, beta=0.01, prediction=prediction)

MLPGD

neuron = MLPGD()
prediction = 1
yn = neuron.count(Y_train, X_train, prediction=prediction, epochs=5)
yn = neuron.count(Y, X, prediction=prediction, epochs=1)

MLPELM

neuron = MLPELM()
prediction = 1
yn = neuron.count(Y_train, X_train, prediction = prediction, epochs = 10)
yn = neuron.count(Y, X, prediction = prediction)

MLPLMWL

neuron = MLPLMWL()
prediction = 1
yn = neuron.count(Y, X, learningWindow = 50, overLearn = 10,  prediction = prediction)

Support me

If you find this useful, consider supporting independent open-source development and buy me a coffee.

buy me a coffee

You might also like...
Plotting points that lie on the intersection of the given curves using gradient descent.
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

PyTorch implementation of
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Implements MLP-Mixer: An all-MLP Architecture for Vision.
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Owner
Filip Molcik
KOALA42.com co-founder 🐨 freelance programmer and blogger filipmolcik.com 🚀
Filip Molcik
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 1, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

null 1 Nov 19, 2021
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 6, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 3, 2023
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 9, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 5, 2023
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 6, 2023