pyrestoolbox
A collection of Reservoir Engineering Utilities
This set of functions focuses on those that the author uses often while crafting programming solutions. These are the scripts that are often copy/pasted from previous work - sometimes slightly modified - resulting in a trail of slightly different versions over the years. Some attempt has been made here to make this implementation flexible enough such that it can be relied on as-is going forward.
Includes functions to perform simple calculations including;
- Inflow for oil and gas
- PVT Calculations for oil
- PVT calculation for gas
- Creation of Black Oil Table information
- Creation of layered permeability distribution consistent with a Lorenze heterogeneity factor
- Extract problem cells information from Intesect (IX) print files
- Generation of AQUTAB include file influence functions for use in ECLIPSE
- Creation of Corey and LET relative permeability tables in Eclipse format
This is the initial public release, with improvements and additions expected over time. Apologies in advance that it is only in oilfield units with no current plans to add multi-unit support.
Function List
Inflow |
|
Gas PVT |
|
Oil PVT |
|
Brine PVT |
|
Permeability Layering |
|
Simulation Helpers |
|
Relative Permeability |
|
Getting Started
Install the library with pip:
pip install pyrestoolbox
Import library into your project and start using.
A simple example below of estimating oil bubble point pressure.
>>> from pyrestoolbox import pyrestoolbox as rtb
>>> rtb.oil_pbub(api=43, degf=185, rsb=2350, sg_g =0.72, pbmethod ='VALMC')
5179.51086900132
A set of Gas-Oil relative permeability curves with the LET method
>>> import matplotlib.pyplot as plt
>>> df = rtb.rel_perm(rows=25, krtable='SGOF', krfamily='LET', kromax =1, krgmax =1, swc =0.2, sorg =0.15, Lo=2.5, Eo = 1.25, To = 1.75, Lg = 1.2, Eg = 1.5, Tg = 2.0)
>>> plt.plot(df['Sg'], df['Krgo'], c = 'r', label='Gas')
>>> plt.plot(df['Sg'], df['Krog'], c = 'g', label='Oil')
>>> plt.title('SGOF Gas Oil LET Relative Permeability Curves')
>>> plt.xlabel('Sg')
>>> plt.ylabel('Kr')
>>> plt.legend()
>>> plt.grid('both')
>>> plt.plot()
Or a set of Water-Oil relative permeability curves with the Corey method
>>> df = rtb.rel_perm(rows=25, krtable='SWOF', kromax =1, krwmax =0.25, swc =0.15, swcr = 0.2, sorw =0.15, no=2.5, nw=1.5)
>>> plt.plot(df['Sw'], df['Krow'], c = 'g', label='Oil')
>>> plt.plot(df['Sw'], df['Krwo'], c = 'b', label='Water')
>>> plt.title('SWOF Water Oil Corey Relative Permeability Curves')
>>> plt.xlabel('Sw')
>>> plt.ylabel('Kr')
>>> plt.legend()
>>> plt.grid('both')
>>> plt.plot()
A set of dimensionless pressures for the constant terminal rate Van Everdingin & Hurst aquifer, along with an AQUTAB.INC export for use in ECLIPSE.
>>> ReDs = [1.5, 2, 3, 5, 10, 25, 1000]
>>> tds, pds = rtb.influence_tables(ReDs=ReDs, export=True)
>>>
>>> for p, pd in enumerate(pds):
>>> plt.plot(tds, pd, label = str(ReDs[p]))
>>>
>>> plt.xscale('log')
>>> plt.yscale('log')
>>> plt.legend(loc='upper left')
>>> plt.grid(which='both')
>>> plt.xlabel('Dimensionless Time (tD)')
>>> plt.ylabel('Dimensionless Pressure Drop (PD)')
>>> plt.title('Constant Terminal Rate Solution')
>>> plt.show()
Or creating black oil table information for oil
>>> results = rtb.make_bot_og(pi=4000, api=38, degf=175, sg_g=0.68, pmax=5000, pb=3900, rsb=2300, nrows=50)
>>> df, st_deno, st_deng, res_denw, res_cw, visw, pb, rsb, rsb_frac, usat = results['bot'], results['deno'], results['deng'], results['denw'], results['cw'], results['uw'], results['pb'], results['rsb'], results['rsb_scale'], results['usat']
>>> print('Stock Tank Oil Density:', st_deno, 'lb/cuft')
>>> print('Stock Tank Gas Density:', st_deng, 'lb/cuft')
>>> print('Reservoir Water Density:', res_denw, 'lb/cuft')
>>> print('Reservoir Water Compressibility:', res_cw, '1/psi')
>>> print('Reservoir Water Viscosity:', visw,'cP')
>>> fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,10))
>>> ax1.plot(df['Pressure (psia)'], df['Rs (scf/stb)'])
>>> ax2.plot(df['Pressure (psia)'], df['Bo (rb/stb)'])
>>> ax3.plot(df['Pressure (psia)'], df['uo (cP)'])
>>> ax4.semilogy(df['Pressure (psia)'], df['Co (1/psi)'])
>>> ...
>>> plt.show()
Stock Tank Oil Density: 52.05522123893805 lb/cuft
Stock Tank Gas Density: 0.052025361717109773 lb/cuft
Reservoir Water Density: 61.40223160167964 lb/cuft
Reservoir Water Compressibility: 2.930237693350768e-06 1/psi
Reservoir Water Viscosity: 0.3640686136171888 cP
And gas
>>> fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,10))
>>> ax1.semilogy(df['Pressure (psia)'], df['Bg (rb/mscf'])
>>> ax2.plot(df['Pressure (psia)'], df['ug (cP)'])
>>> ax3.plot(df['Pressure (psia)'], df['Gas Z (v/v)'])
>>> ax4.semilogy(df['Pressure (psia)'], df['Cg (1/psi)'])
>>> ...
>>> plt.show()
With ability to generate Live Oil PVTO style table data as well
>>> pb = 4500
>>> results = rtb.make_bot_og(pvto=True, pi=4000, api=38, degf=175, sg_g=0.68, pmax=5500, pb=pb, nrows=25, export=True)
>>> df, st_deno, st_deng, res_denw, res_cw, visw, pb, rsb, rsb_frac, usat = results['bot'], results['deno'], results['deng'], results['denw'], results['cw'], results['uw'], results['pb'], results['rsb'], results['rsb_scale'], results['usat']
>>>
>>> if len(usat) == 0:
>>> usat_flag = False
>>> else:
>>> usat_flag=True
>>> usat_p, usat_bo, usat_uo = usat
>>>
>>> try:
>>> pb_idx = df['Pressure (psia)'].tolist().index(pb)
>>> bob = df['Bo (rb/stb)'].iloc[pb_idx]
>>> rsb = df['Rs (mscf/stb)'].iloc[pb_idx]
>>> uob = df['uo (cP)'].iloc[pb_idx]
>>> cob = df['Co (1/psi)'].iloc[pb_idx]
>>> no_pb = False
>>> except:
>>> print('Pb was > Pmax')
>>> no_pb = True
>>>
>>> print('Pb (psia):', pb)
>>> print('Bob (rb/stb):', bob)
>>> print('Rsb (mscf/stb):', rsb)
>>> print('Rsb Scaling Required:', rsb_frac)
>>> print('Visob (cP):', uob)
>>> print('Cob (1/psi):', cob,'\n')
>>> print('Stock Tank Oil Density:', st_deno, 'lb/cuft')
>>> print('Stock Tank Gas Density:', st_deng, 'lb/cuft')
>>> print('Reservoir Water Density:', res_denw, 'lb/cuft')
>>> print('Reservoir Water Compressibility:', res_cw, '1/psi')
>>> print('Reservoir Water Viscosity:', visw,'cP')
>>>
>>> fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,10))
>>> ax1.plot(df['Pressure (psia)'], df['Rs (mscf/stb)'])
>>> ax2.plot(df['Pressure (psia)'], df['Bo (rb/stb)'])
>>> ax3.plot(df['Pressure (psia)'], df['uo (cP)'])
>>> ax4.semilogy(df['Pressure (psia)'], df['Co (1/psi)'])
>>>
>>> ax1.plot([pb], [rsb], 'o', c='r')
>>> ax2.plot([pb], [bob], 'o', c='r')
>>> ax3.plot([pb], [uob], 'o', c='r')
>>> ax4.plot([pb], [cob], 'o', c='r')
>>>
>>> if usat_flag:
>>> if no_pb == False:
>>> for i in range(len(usat_bo)):
>>> ax2.plot(usat_p[i], usat_bo[i], c='k')
>>> ax3.plot(usat_p[i], usat_uo[i], c='k')
>>>
>>> fig.suptitle('Black Oil Properties')
>>> ..
>>> ..
>>> plt.show()
Pb (psia): 4500
Bob (rb/stb): 1.6072798403441817
Rsb (mscf/stb): 1.2863705330979234
Rsb Scaling Required: 0.9713981737449556
Visob (cP): 0.3422139569449832
Cob (1/psi): 5.711273668114706e-05
Stock Tank Oil Density: 52.05522123893805 lb/cuft
Stock Tank Gas Density: 0.052025361717109773 lb/cuft
Reservoir Water Density: 61.40223160167964 lb/cuft
Reservoir Water Compressibility: 2.930237693350768e-06 1/psi
Reservoir Water Viscosity: 0.3640686136171888 cP
Development
pyrestoolbox
is maintained by Mark W. Burgoyne (https://github.com/mwburgoyne).