SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system

Overview

SALaD

SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system. SALaD utilizes Object-based Image Analysis and Random Forest to map landslides. It requires optical imagery, a DEM, corner coordinates of a training area, and manually mapped landslides within the training area. The code is built to run primarily on a Linux.

Installation

  1. Install Singularity

User can find thorough instruction for installation of Singularity >=3.0.0 on different operating systems (Linux, Windows or Mac) here: https://sylabs.io/guides/3.0/user-guide/installation.html

  1. Build a Singularity container from Singularity definition file

Singularity definition files can be used as the target when building a container. Assuming user has the definition file called SALaD.def (see below), the container (named ilab-salad.sif) can be built with the command:

$ sudo singularity build ilab-salad.sif SALaD.def

For more details, check:
https://sylabs.io/guides/3.0/user-guide/build_a_container.html

If you don’t have root access on a Linux machine or want to host your container on the cloud, you can build the container on the Remote Builder: https://cloud.sylabs.io/builder

Executing SALaD from a container

singularity run -B < path_to_singularity_container>/ilab-salad.sif python /driver.py -i "image.tif" -d "srtm.tif" -l "manual_landslide.shp" -lx 308335 -ly 3114295 -rx 312440 -ry 3109225 -rmi 2 -rma 32 -s 2 -p " " -op " " -r "landslide_SALaD.shp"

Example definition file (SALaD.def)

Bootstrap: docker
FROM: nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04


%labels
    Author Remi Cresson 
   
    
    Version v1.0.0


%help
========================================================================
        - Orfeo Toolbox (without Tensor Flow)
========================================================================


%environment
    # ------------------------------------------------------------------
    # Add important environment variables
    # ------------------------------------------------------------------
    export PATH="$PATH:/work/otb/superbuild_install/bin/"
    export PYTHONPATH="/work/otb/superbuild_install/lib/otb/python:$PYTHONPATH"
    export OTB_APPLICATION_PATH="/work/otb/superbuild_install/lib/otb/applications"
    export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/work/otb/superbuild_install/lib/:/work/tf/installdir/lib/"
    # set PYTHONPATH for access to OTB application
    export PYTHONPATH="/usr/local/otb/src/innovation-lab:$PYTHONPATH"


%post
apt-get update -y \
 && apt-get upgrade -y \
 && apt-get install -y --no-install-recommends \
        git


    # retrieve OTB source from git repository and open permissions
    mkdir -p /usr/local/otb
    git clone --single-branch --branch otb-container https://github.com/nasa-nccs-hpda/innovation-lab.git /usr/local/otb
    chmod a+rwx -R /usr/local/otb


apt-get update -y \
 && apt-get upgrade -y \
 && apt-get install -y --no-install-recommends \
        sudo \
        ca-certificates \
        curl \
        make \
        cmake \
        g++ \
        gcc \
        git \
        libtool \
        swig \
        xvfb \
        wget \
        autoconf \
        automake \
        pkg-config \
        zip \
        zlib1g-dev \
        unzip \
 && rm -rf /var/lib/apt/lists/*


# ---------------------------------------------------------------------------
# OTB and TensorFlow dependencies
# ---------------------------------------------------------------------------
apt-get update -y \
 && apt-get upgrade -y \
 && apt-get install -y --no-install-recommends \
        freeglut3-dev \
        libboost-date-time-dev \
        libboost-filesystem-dev \
        libboost-graph-dev \
        libboost-program-options-dev \
        libboost-system-dev \
        libboost-thread-dev \
        libcurl4-gnutls-dev \
        libexpat1-dev \
        libfftw3-dev \
        libgdal-dev \
        libgeotiff-dev \
        libglew-dev \
        libglfw3-dev \
        libgsl-dev \
        libinsighttoolkit4-dev \
        libkml-dev \
        libmuparser-dev \
        libmuparserx-dev \
        libopencv-core-dev \
        libopencv-ml-dev \
        libopenthreads-dev \
        libossim-dev \
        libpng-dev \
        libqt5opengl5-dev \
        libqwt-qt5-dev \
        libsvm-dev \
        libtinyxml-dev \
        qtbase5-dev \
        qttools5-dev \
        default-jdk \
        python3-pip \
        python3.6-dev \
        python3.6-gdal \
        python3-setuptools \
        libxmu-dev \
        libxi-dev \
        qttools5-dev-tools \
        bison \
        software-properties-common \
        dirmngr \
        apt-transport-https \
        lsb-release \
        gdal-bin \
 && rm -rf /var/lib/apt/lists/*


# ---------------------------------------------------------------------------
# Python packages
# ---------------------------------------------------------------------------
ln -s /usr/bin/python3 /usr/bin/python \
 && python3 -m pip install --upgrade pip \
 && python3 -m pip install pip six numpy wheel mock keras future


# ---------------------------------------------------------------------------
# Build OTB: Stage 1 (clone)
# ---------------------------------------------------------------------------
mkdir -p /work/otb \
 && cd /work/otb \
 && git clone https://gitlab.orfeo-toolbox.org/orfeotoolbox/otb.git otb \
 && cd otb \
 && git checkout release-7.0


# ---------------------------------------------------------------------------
# Build OTB: Stage 2 (superbuild)
# ---------------------------------------------------------------------------
mkdir -p /work/otb/build \
 && cd /work/otb/build \
 && cmake /work/otb/otb/SuperBuild \
        -DUSE_SYSTEM_BOOST=ON \
        -DUSE_SYSTEM_CURL=ON \
        -DUSE_SYSTEM_EXPAT=ON \
        -DUSE_SYSTEM_FFTW=ON \
        -DUSE_SYSTEM_FREETYPE=ON \
        -DUSE_SYSTEM_GDAL=ON \
        -DUSE_SYSTEM_GEOS=ON \
        -DUSE_SYSTEM_GEOTIFF=ON \
        -DUSE_SYSTEM_GLEW=ON \
        -DUSE_SYSTEM_GLFW=ON \
        -DUSE_SYSTEM_GLUT=ON \
        -DUSE_SYSTEM_GSL=ON \
        -DUSE_SYSTEM_ITK=ON \
        -DUSE_SYSTEM_LIBKML=ON \
        -DUSE_SYSTEM_LIBSVM=ON \
        -DUSE_SYSTEM_MUPARSER=ON \
        -DUSE_SYSTEM_MUPARSERX=ON \
        -DUSE_SYSTEM_OPENCV=ON \
        -DUSE_SYSTEM_OPENTHREADS=ON \
        -DUSE_SYSTEM_OSSIM=ON \
        -DUSE_SYSTEM_PNG=ON \
        -DUSE_SYSTEM_QT5=ON \
        -DUSE_SYSTEM_QWT=ON \
        -DUSE_SYSTEM_TINYXML=ON \
        -DUSE_SYSTEM_ZLIB=ON \
        -DUSE_SYSTEM_SWIG=OFF \
        -DOTB_WRAP_PYTHON=OFF \
 && make -j $(grep -c ^processor /proc/cpuinfo)


# ---------------------------------------------------------------------------
# Build OTB: Stage 3 (bindings)
# ---------------------------------------------------------------------------
cd /work/otb/otb/Modules/Remote \
 && git clone https://github.com/remicres/otbtf.git \
 && cd /work/otb/build/OTB/build \
 && cmake /work/otb/otb \
        -DOTB_WRAP_PYTHON=ON \
        -DPYTHON_EXECUTABLE=/usr/bin/python3.6 \
        -Dopencv_INCLUDE_DIR=/usr/include \
        -DModule_OTBTensorflow=ON \
        -DOTB_USE_TENSORFLOW=OFF \
        -DTENSORFLOW_CC_LIB=/work/tf/installdir/lib/libtensorflow_cc.so \
        -DTENSORFLOW_FRAMEWORK_LIB=/work/tf/installdir/lib/libtensorflow_framework.so \
        -Dtensorflow_include_dir=/work/tf/installdir/include/ \
 && cd /work/otb/build/ \
 && make -j $(grep -c ^processor /proc/cpuinfo)




# ---------------------------------------------------------------------------
# Install Packages and Retrieve Source Code
# ---------------------------------------------------------------------------
    pip3 install --upgrade richdem==0.3.4
    pip3 install --upgrade fiona==1.8.13
    pip3 install --upgrade geopandas==0.7.0
    pip3 install --upgrade numba==0.49.1
    pip3 install --upgrade pandas==1.0.3
    pip3 install --upgrade peakutils==1.3.3
    pip3 install --upgrade rasterstats==0.14.0
    pip3 install --upgrade scikit-learn==0.21.3


# Below added 7/15/21


     sudo apt-get update
     sudo apt-get install -y libspatialindex-dev


     pip3 install Pysal==1.14.4 
     pip3 install rtree==0.8.3 

   
You might also like...
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

A graphical Semi-automatic annotation tool based on labelImg and Yolov5
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications
deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Automatic Weapon Detection Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications. Loved the pro

Python implementation of an automatic parallel parking system in a virtual environment, including path planning, path tracking, and parallel parking
Python implementation of an automatic parallel parking system in a virtual environment, including path planning, path tracking, and parallel parking

Automatic Parallel Parking: Path Planning, Path Tracking & Control This repository contains a python implementation of an automatic parallel parking s

Based on the selenium automatic test framework of python, the program crawls the score information of the educational administration system of a unive

whpu_spider 该程序基于python的selenium自动化测试框架,对某高校的教务系统的成绩信息实时爬取,在检测到成绩更新之后,会通过电子邮件的方式,将更新的成绩以文本的方式发送给用户,可以使得用户在不必手动登录教务系统网站时,实时获取成绩更新的信息。 该程序仅供学习交流,不可用于恶意攻

ADCS - Automatic Defect Classification System (ADCS) for SSMC
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

examify-io is an online examination system that offers automatic grading , exam statistics , proctoring and programming tests , multiple user roles

examify-io is an online examination system that offers automatic grading , exam statistics , proctoring and programming tests , multiple user roles ( Examiner , Supervisor , Student )

LINUX-AOS (Automatic Optimization System)

LINUX-AOS (Automatic Optimization System)

Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

Poisson Surface Reconstruction for LiDAR Odometry and Mapping
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

 geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Owner
NASA
Read about NASA's Open Data initiative here: https://www.nasa.gov/open/ & Members Find Instructions here: http://nasa.github.io/
NASA
Automatic picture transmission(APT) protocol decoder for NOAA weather satellites

Automatic picture transmission(APT) decoder Automatic picture transmission protocol is used by NOAA satellites. They constantly send a frequency modul

Jayachandra Kasarla 25 Aug 5, 2022
Kainat 13 Mar 7, 2022
Nudity detection with Python

nude.py About Nudity detection with Python. Port of nude.js to Python. Installation from pip: $ pip install --upgrade nudepy from easy_install: $ eas

Hideo Hattori 881 Jan 6, 2023
Pnuemonia Normal detection by using XRay images.

Pnuemonia Normal detection by using XRay images. Got image datas from kaggle(link is given in sources.txt file) also normal xray images from other site (also link is given) in order to avoid data disbalancing.

Zarina 1 Feb 28, 2022
An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters.

Ascii Artist An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters. Installing Installing with

null 18 Jan 3, 2023
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream video.

Peace 10 Jun 30, 2021
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 8, 2023
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 8, 2022
Template repo for a GCP-hosted REST API with automatic API versioning and custom domain mapping

Python + Poetry REST API with FastAPI, hosted on GCP This template will get you ready to deploy a FastAPI app in Google Cloud with automatic API versi

Kevin Duff 10 Dec 25, 2022
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie

Qiskit Partners 27 Nov 6, 2022