AWS API Gateway Websocket Asynchronous Notifications Pusher

Overview

AWS API Gateway Websocket Asynchronous Pusher

Illustration

Fast AWS API Gateway websockets notifications' pusher using Python AsyncIO for managing asynchronous and concurrent non-blocking IO calls to DynamoDB connections store and API Gateway management API. making it suitable for broadcasting messages to multiple users with a fast and cost-effective approach.

You can test the Pusher with this demo application or use the live demo at https://sumu.kodhive.com

Features

  • Multiple sources: capable of receiving notification requests from SQS and SNS, which make it suitable for processing single notification request from SNS and high number of notification requests in batches when polling from SQS

  • Multicast Notifications: the pusher can send messages to only a subset of users (eg: users in a chat room).

  • Broadcast Notifications: sometimes you just want to send the same message for all connected users (eg: broad announcements)

  • Exclusion Notifications: the pusher can broadcast messages to all users except a list of excluded users (eg: online/offline presence events can be sent to all except the originator)

  • Stale Connections Pruning: capable of detecting and deleting stale connections from DynamoDB connections store in case API Gateway missed cleaning them.

  • Asynchronous Processing: the pusher is using AsyncIO to notify multiple users/connections concurrently to not wait for inflight requests to DynamoDB/API Gateway so you don't pay AWS the waiting time 😎

  • Batch Processing: when using SQS as event source the Pushed will be able to process batches of notification requests, also concurrently.

  • Duplicate Users Detection: able to detect duplicate users in a notification requests and make them unique set of users. to avoid double notifications.

Requirements

Illustration

  • DynamoDB Connections Store: a DynamoDB table where users connections are stored, It should have a hash key user_id and a range key connection_id, where every user can have multiple connections and the Pusher can retrieve specific user connections by querying with the hash key.

  • AWS API Gateway Websockets API: an already configured Websocket API Gateway. the Pusher will use the connection management endpoint passed as environment variable to post messages to users.

  • SNS Topic: the SNS Topic that the pusher will subscribe to for notifications requests.

  • SQS Queue: the SQS Queue that the pusher will poll notifications requests from.

Notification Requests

Backend applications can send notifications to AWS API Gateway Websocket connected users by sending a notification request to the service integrated with the Pusher (SNS|SQS), notifications requests should meet the following format:

For Multicast notifications, the message should be a JSON String that contains the list of users and the actual data:

import json

message = {
    "users": ["783304b1-2320-44db-8f58-09c3035a686b", "a280aa41-d99b-4e1c-b126-6f39720633cc"],
    "data": {"type": "notification", "message": "A message sent to multiple user"}
}
message_to_send = json.dumps(message)

For broadcast notifications, the same but do not provide users list or provide an empty users list:

import json

message = {
    "data": {"type": "announcement", "message": "A broadcast to all users"}
}
message_to_send = json.dumps(message)

For exclusion notifications, instead of providing users list, provide a list of excluded users:

import json

message = {
    "exclude_users": ["783304b1-2320-44db-8f58-09c3035a686b"],
    "data": {
      "type": "announcement", 
      "message": {
        "user_id": "783304b1-2320-44db-8f58-09c3035a686b", 
        "status": "OFFLINE"
      }
    }
}
message_to_send = json.dumps(message)

Integration

The Pusher can accept notifications requests from multiple sources like SQS and SNS. every source has its advantages and disadvantages when it comes to speed and cost.

Notification requests through SNS

The Pusher can subscribe to notifications SNS Topic, and whenever a backend applications Publish notification requests to SNS, the later will quickly notify the Pusher by sending the notification request to the subscribed Pusher Lambda.

This will result in a fast delivery because this approach does not introduce a polling mechanism and SNS will notify the Pusher whenever a notification request is available. however, at scale SNS will trigger a Pusher Lambda Function for every notification request and given that the Lambda Function Concurrent Invocations Limit is 1,000 per account (Can be increased to 100,000 by support-ticket) notification requests will be throttled for large applications.

Publish to SNS when you have small application with few users

import os
import json
import time
import boto3

message = {
    "users": ["783304b1-2320-44db-8f58-09c3035a686b", "a280aa41-d99b-4e1c-b126-6f39720633cc"],
    "data": {
        "type": "notification",
        "message": {
            "text": "Your order has been fulfilled!",
            "timestamp": int(time.time())
        }
    }
}
boto3.client("sns").sns.publish(
    TargetArn=os.environ["NOTIFICATIONS_TOPIC_ARN"],
    Message=json.dumps(message),
)

Sending notification requests through SQS

Unlike SNS, when sending notifications to SQS queue, the Pusher Lambda Function event source can be configured to poll notification requests from the SQS Queue, and it will periodically poll notification requests from the Queue using Polling Technique.

This will result in notifications requests to be processed in batches, which comes with many benefits:

  • Fewer lambda function executions, to not reach the Lambda Concurrent Execution Limit.
  • As the pusher uses AsyncIO, it will be able to process batches of SQS Records concurrently.
  • Low cost thanks to SQS batches and fewer Lambda Executions.

You can meet the same speed and performance of SNS if you set the SQS queue receive_wait_time_seconds to 0. this will make the Lambda Function do Short Polling instead of Long Polling. and it will receive the notifications requests immediately after being visible on SQS queue.

Send to SQS when you have a large application with millions of users

import os
import json
import time
import boto3

message = {
    "users": ["783304b1-2320-44db-8f58-09c3035a686b", "a280aa41-d99b-4e1c-b126-6f39720633cc"],
    "data": {
        "type": "notification",
        "message": {
            "text": "Your order has been fulfilled!",
            "timestamp": int(time.time())
        }
    }
}
boto3.client("sqs").send_message(
  QueueUrl=os.environ.get("NOTIFICATIONS_QUEUE_URL"),
  MessageBody=json.dumps(message),
)

Deploy

Before deploying the pusher, version control it on your github account and then call the Terraform module shipped with the Pusher to provision the Pusher Lambda Function, and the Terraform module to create CI/CD pipeline:

module "pusher" {
  source      = "./infra"
  prefix      = local.prefix
  common_tags = local.common_tags

  agma_arn       = "${aws_apigatewayv2_api._.execution_arn}/${aws_apigatewayv2_stage._.name}/POST/@connections"
  apigw_endpoint = "https://live.kodhive.com/push"
  # Custom API Gateway Domain
  connections_table = {
    name = aws_dynamodb_table.connections.name
    arn  = aws_dynamodb_table.connections.arn
  }
  notifications_topic_arn = aws_sns_topic.notifications.arn
  notifications_queue_arn = aws_sqs_queue.notifications.arn
}

module "pusher_ci" {
  source      = "git::https://github.com/obytes/terraform-aws-lambda-ci.git//modules/ci"
  prefix      = "${local.prefix}-pusher-ci"
  common_tags = var.common_tags

  # Lambda
  lambda                   = module.pusher.lambda
  app_src_path             = "src"
  packages_descriptor_path = "src/requirements/lambda.txt"

  # Github
  pre_release  = true
  s3_artifacts = {
    arn    = aws_s3_bucket.artifacts.arn
    bucket = aws_s3_bucket.artifacts.bucket
  }
  github = {
    owner          = "obytes"
    webhook_secret = "not-secret"
    connection_arn = "arn:aws:codestar-connections:us-east-1:{ACCOUNT_ID}:connection/{CONNECTION_ID}"
  }
  github_repository = {
    name   = "apigw-websocket-pusher"
    branch = "main"
  }
  # Notifications
  ci_notifications_slack_channels = {
    info  = "ci-info"
    alert = "ci-alert"
  }
}
You might also like...
Benchmark a WebSocket server's message throughput ⌛
Benchmark a WebSocket server's message throughput ⌛

📻 WebSocket Benchmarker ⌚ Message throughput is how fast a WebSocket server can parse and respond to a message. Some people consider this to be a goo

wssh ("wish") is a command-line utility/shell for WebSocket inpsired by netcat.

wssh ("wish") is a command-line utility/shell for WebSocket inspired by netcat

Whatsapp Clone using django, django-channels and websocket
Whatsapp Clone using django, django-channels and websocket

whatsapp-clone Whatsapp Clone using django, django-channels and websocket Features : Signup/Login One on One personal chat with other user Some screen

Minecraft WebSocket

Minecraft-WebSocket Pythonでマインクラフトと通信します。 紹介動画 推奨設定 Minecraft Windows Edition (Education Edition) 1.17 以上 Python 3系(3.8.2で動作確認済み) 必要なモジュール ・asyncio ・w

Tetri5 - Multiplayer Websocket Backend

Tetri5 - Multiplayer Websocket Backend This repository is the backend of the multiplayer portion of the Tetri5 game client. It uses the python websock

alien.py - Python interface to websocket endpoint of ALICE Grid Services

alien.py - Python interface to websocket endpoint of ALICE Grid Services Quick containerized testing: singularity

image stream publish server over websocket
image stream publish server over websocket

Image Stream Push Server 简介 通过浏览器网页实时查看图像处理结果。 环境 运行程序需要安装一下python依赖: tornado: 用于创建http及websocket服务; opencv-contrib-python: 用于图像数据源获取及图像处理。 使用 进入到src目

Discord.py Connect to Discord voice call with websocket

Discord.py Connect to Discord voice call with websocket

A websocket client for Source Filmmaker intended to trasmit scene and frame data to other applications.

SFM SOCK A websocket client for Source Filmmaker intended to trasmit scene and frame data to other applications. This software can be used to transmit

Owner
OBytes
We're a team of dreamers and makers who create products that your users will love
OBytes
WebSocket and WAMP in Python for Twisted and asyncio

Autobahn|Python WebSocket & WAMP for Python on Twisted and asyncio. Quick Links: Source Code - Documentation - WebSocket Examples - WAMP Examples Comm

Crossbar.io 2.4k Jan 4, 2023
Library for building WebSocket servers and clients in Python

What is websockets? websockets is a library for building WebSocket servers and clients in Python with a focus on correctness and simplicity. Built on

Aymeric Augustin 4.3k Jan 4, 2023
WebSocket client for Python

websocket-client The websocket-client module is a WebSocket client for Python. It provides access to low level APIs for WebSockets. All APIs are for s

null 3.1k Jan 2, 2023
Django Channels HTTP/WebSocket server

daphne Daphne is a HTTP, HTTP2 and WebSocket protocol server for ASGI and ASGI-HTTP, developed to power Django Channels. It supports automatic negotia

Django 1.9k Dec 31, 2022
Websockify is a WebSocket to TCP proxy/bridge. This allows a browser to connect to any application/server/service. Implementations in Python, C, Node.js and Ruby.

websockify: WebSockets support for any application/server websockify was formerly named wsproxy and was part of the noVNC project. At the most basic l

noVNC 3.3k Jan 3, 2023
WebSocket emulation - Python server

SockJS-tornado server SockJS-tornado is a Python server side counterpart of SockJS-client browser library running on top of Tornado framework. Simplif

Serge S. Koval 854 Nov 19, 2022
一款为 go-cqhttp 的正向 WebSocket 设计的 Python SDK

Nakuru Project 一款为 go-cqhttp 的正向 WebSocket 设计的 Python SDK 在 kuriyama 的基础上改动 项目名来源于藍月なくる,图标由せら绘制 食用方法 将 nakuru 文件夹移至 Python 的 Lib/site-packages 目录下。

null 35 Dec 21, 2022
This websocket program is for data transmission between server and client. Data transmission is for Federated Learning in Edge computing environment.

websocket-for-data-transmission This websocket program is for data transmission between server and client. Data transmission is for Federated Learning

null 9 Jul 19, 2022
Using python-binance to provide websocket data to freqtrade

The goal of this project is to provide an alternative way to get realtime data from Binance and use it in freqtrade despite the exchange used. It also uses talipp for computing

null 58 Jan 1, 2023
WebSocket implementation in Python built on top of websockets python library. Similar to Node.js's ws.

ws WebSocket implementation in Python built on top of websockets python library. Similar to Node.js's ws. Basic usage. server.py import ws server = w

AceExpert 7 Jun 27, 2022