Intention Adaptive Graph Neural Network (IAGNN)
This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation.
If you found this work helpful, please kindly cite the paper as follows:
@article{cui2021intention,
title={Intention Adaptive Graph Neural Network for Category-aware Session-based Recommendation},
author={Cui, Chuan and Shen, Qi and Zhu, Shixuan and Pang, Yitong and Zhang, Yiming and Gao, Hanning and Wei, Zhihua},
journal={arXiv preprint arXiv:2112.15352},
year={2021}
}
Prerequisite
Install the dependencies by conda
dgl~=0.6.0.post1
ipdb~=0.13.9
numpy~=1.21.2
pretty_errors~=1.2.24
PyMySQL~=1.0.2
scikit_learn~=1.0.2
torch~=1.8.1
TorchSnooper~=0.8
tqdm~=4.62.3
or by pip
:
pip install -r requirements.txt
Dataset
GoogleDrive BaiduPan (提取码:2jd1)
Put the downloaded *.pkl
files by following this file structure:
|--dataset
|--diginetica_x
|--train.pkl
|--test.pkl
|--jdata_cd
|--train.pkl
|--test.pkl
|--yc_BT_4
|--train.pkl
|--test.pkl
|--IAGNN # Souce code of this repository
|--train.py
|--IAGNN.py
...
How to train
# JData
python train.py --lr=0.003 --lr_step=2 --GL=3 --dataset=jdata_cd
# Yoochoose
python train.py --lr=0.001 --lr_step=1 --GL=1 --dataset=yc_BT_4
# Diginetica
python train.py --lr=0.003 --lr_step=1 --GL=2 --dataset=diginetica_x