onelearn: Online learning in Python

Overview

Build Status Documentation Status PyPI - Python Version PyPI - Wheel GitHub stars GitHub issues GitHub license Coverage Status

onelearn: Online learning in Python

Documentation | Reproduce experiments |

onelearn stands for ONE-shot LEARNning. It is a small python package for online learning with Python. It provides :

  • online (or one-shot) learning algorithms: each sample is processed once, only a single pass is performed on the data
  • including multi-class classification and regression algorithms
  • For now, only ensemble methods, namely Random Forests

Installation

The easiest way to install onelearn is using pip

pip install onelearn

But you can also use the latest development from github directly with

pip install git+https://github.com/onelearn/onelearn.git

References

@article{mourtada2019amf,
  title={AMF: Aggregated Mondrian Forests for Online Learning},
  author={Mourtada, Jaouad and Ga{\"\i}ffas, St{\'e}phane and Scornet, Erwan},
  journal={arXiv preprint arXiv:1906.10529},
  year={2019}
}
Comments
  • Unable to pickle AMFClassifier.

    Unable to pickle AMFClassifier.

    I would like to save the AMFClassifier, but am unable to pickle it. I have also tried to use dill or joblib, but they also don't seem to work.

    Is there maybe another way to somehow export the AMFClassifier in any way, such that I can save it and load it in another kernel?

    Below I added a snippet of code which reproduces the error. Note that only after the partial_fit method an error occurs when pickling. When the AMFClassifier has not been fit yet, pickling happens without problems, however, exporting an empty model is pretty useless.

    Any help or tips is much appreciated.

    from onelearn import AMFClassifier
    import dill as pickle
    from sklearn import datasets
    
    
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    
    amf = AMFClassifier(n_classes=3)
    
    dump = pickle.dumps(amf)
    amf = pickle.loads(dump)
    
    amf.partial_fit(X,y)
    
    dump = pickle.dumps(amf)
    amf = pickle.loads(dump)
    
    opened by w-feijen 1
  • Move experiments of the paper in a experiments folder

    Move experiments of the paper in a experiments folder

    • Update the documentation
    • Explain that we must clone the repo

    Move also the short experiments to a examples folder and build a sphinx gallery with it

    enhancement 
    opened by stephanegaiffas 1
  • Add some extra tests

    Add some extra tests

    • Test that batch versus online training leads to the exact same forest
    • Test the behavior of reserve_samples, with several calls to partial_fit to check that memory is correctly allocated and
    tests 
    opened by stephanegaiffas 1
  • What if predict_proba receives a single sample

    What if predict_proba receives a single sample

    get_amf_decision_online amf.partial_fit(X_train[iteration - 1], y_train[iteration - 1]) File "/Users/stephanegaiffas/Code/onelearn/onelearn/forest.py", line 259, in partial_fit n_samples, n_features = X.shape

    opened by stephanegaiffas 1
  • Improve coverage

    Improve coverage

    A problem is that @jit functions don't work with coverage... a workaround is to disable using the NUMBA_DISABLE_JIT environment variable, but breaks the code that use @jitclass and .class_type.instance_type attributes

    enhancement bug fix 
    opened by stephanegaiffas 1
Releases(v0.3)
  • v0.3(Sep 29, 2021)

    This release adds the following improvements

    • AMFClassifier and AMFRegressor can be serialized to files (using internally pickle) using the save and load methods
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 6, 2020)

    This release adds the following improvements

    • SampleCollection pre-allocates more samples instead of the bare minimum for faster computation
    • The playground can be launched from the library
    • A documentation on readthedocs
    • Faster computations and a lot of code cleaning
    • Unittests for python 3.6-3.8
    Source code(tar.gz)
    Source code(zip)
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

null 2 Aug 23, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

Vowpal Wabbit 8.1k Dec 30, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 3, 2023
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 7, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 9, 2023
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 3, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah)  Xue 0 Jan 31, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 8, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 3, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

null 1.3k Dec 28, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 3, 2023
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 6, 2023
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

null 6.2k Jan 1, 2023