Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

Overview

FDRL-PC-Dyspan

Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

This repository contains the entire code for our work "Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks" and has been accepted for presentation in IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) 2021. You can find the paper here: https://arxiv.org/abs/2112.03465

Requirements

The following versions have been tested: Python 3.7.11 + Pytorch 1.7.0 But newer versions should also be fine.

The introduction of each file

Environment and benchmarks:

Environment_CU.py: the mutilcell cellular wireless Environment simulator for power control.

Benchmark_alg.py: bench mark class which contains 4 algorithms: WWMSE, FP, random and maxpower.

Benchmark_test.py: testing the benchmark performance in an environment.

The wireless Environment simulator and Banchmark algorithms were taken from this repository: https://github.com/mengxiaomao/PA_TWC

Value Badesed DRL, DQN:

DQN_agent_pytorch.py: The DQN agent class.

DeepQN_Model.py: Deep Q netwrork architechure for the DQN agent class.

Experience_replay.py: Exprience replar buffer class for DQN agent.

main_dqn.py: Centrelized Deep Q Learning main file.

main_dqn_multiagent.py: Federated and Distributed multi agent Deep Q Learning main file.

Policy Badesed DRL, DPG:

Reinforce_Pytorch.py:Deep Reinforce agent and the policy netwrok architecture.

main_reinforce.py: Centrelized Deep Policy Gradient (Deep Reinforce) main file.

main_Policy_multiagent.py: Federated and Distributed multi agent Deep policy gradient main file.

Plots and Reults:

plot_fig4.py: Plotting the Figure 4 of the paper.

optmization_DRL_compare_all.py: Compaering the performance of all methods (Table 1 of the paper).

Actor Critic Based DRL: (These were not used for the paper)

ddpg_agent.py:Deep Deterministic Plocy gradient (DDPG) agent class.

TD3.py: Twin Delayed DDPG (TD3) agent class.

main_ddpg.py: Main file for train the TD3 and DDPG agents.

You might also like...
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

JAX code for the paper
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

ROS-UGV-Control-Interface - Control interface which can be used in any UGV
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

Comments
  • About the parameter

    About the parameter "state_num"

    Hello! I was reading your article lately, but I didn't quite understand a little setting in this code. I would like to ask why the parameter “self.C” in the file Environment_CU.py has a value of 16? And the state_num set 3*16+2=50?I am new to this field and sincerely hope to hear from you!Thank you!

    opened by hexing2333 0
Owner
Peyman Tehrani
PhD Student @ UC Irvine
Peyman Tehrani
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 6, 2023
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library stable-baselines3 to derive a control policy that maximizes melt pool depth consistency.

BaratiLab 11 Dec 27, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 1, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 7, 2022