7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

Overview

kaggle-hpa-2021-7th-place-solution

Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle.

A description of the method can be found in this post in the kaggle discussion.

Dataset Preparation

Resize Images

# Resize train images to 768x768
python scripts/hap_segmenter/create_cell_mask.py resize_image \
    --input_directory data/input/hpa-single-cell-image-classification.zip/train \
    --output_directory data/input/hpa-768768.zip \
    --image_size 768
# Resize train images to 1536x1536
python scripts/hap_segmenter/create_cell_mask.py resize_image \
    --input_directory data/input/hpa-single-cell-image-classification.zip/train \
    --output_directory data/input/hpa-1536.zip \
    --image_size 1536

# Resize test images to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_image \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-768-test.zip \
    --image_size 768
# Resize test images to 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py resize_image \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-1536-test.zip \
    --image_size 1536

You can specify a directory in a zip file in the same way as a normal directory.

Download Public HPA

Download all images in kaggle_2021.tsv in this dataset, resize them into 768x768 and 1536x1536, and archive them as data/input/hpa-public-768.zip and data/input/hpa-public-1536.zip.

Create Cell Mask

# Create cell masks for the Kaggle train set with 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory data/input/hpa-1536.zip \
    --output_directory data/input/hpa-1536-mask-v2.zip \
    --label_cell_scale_factor 1.0

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-1536-mask-v2.zip \
    --output_directory data/input/hpa-768-mask-v2-from-1536.zip \
    --image_size 768

# Create cell masks for the Public HPA dataset with 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory data/input/hpa-public-1536.zip/hpa-public-1536 \
    --output_directory data/input/hpa-public-1536-mask-v2.zip \
    --label_cell_scale_factor 1.0

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-public-1536-mask-v2.zip \
    --output_directory data/input/hpa-public-768-mask-v2-from-1536.zip \
    --image_size 768

# Create cell masks for the test set with the original resolution
# Run with `--label_cell_scale_factor = 0.5` to save inference time
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-test-mask-v2.zip \
    --label_cell_scale_factor 0.5

# Resize the masks to 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-test-mask-v2.zip \
    --output_directory data/input/hpa-test-mask-v2-1536.zip \
    --image_size 1536

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-test-mask-v2.zip \
    --output_directory data/input/hpa-test-mask-v2-768.zip \
    --image_size 768

Create Input for Cell-level Classifier

# Create cell-level inputs for the Kaggle train set using 768x768 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-768768.zip \
    --cell_mask_directory data/input/hpa-768-mask-v2-from-1536.zip \
    --output_directory data/input/hpa-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the Public HPA dataset using 768x768 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-public-768.zip \
    --cell_mask_directory data/input/hpa-public-768-mask-v2-from-1536.zip \
    --output_directory data/input/hpa-public-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the Kaggle train set using 1536x1536 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-1536.zip \
    --cell_mask_directory data/input/hpa-1536-mask-v2.zip \
    --output_directory data/input/hpa-cell-crop-v2-192-from-1536.zip \
    --image_size 192

# Create cell-level inputs for the Public HPA dataset using 1536x1536 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-public-1536.zip \
    --cell_mask_directory data/input/hpa-public-1536-mask-v2.zip \
    --output_directory data/input/hpa-public-cell-crop-v2-192-from-1536.zip \
    --image_size 192

# Create cell-level inputs for the test set using 768x768 images as fixed scale image.
python scripts/hpa_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-768768-test.zip \
    --cell_mask_directory data/input/hpa-test-mask-v2-768.zip \
    --output_directory data/input/hpa-test-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the test set using 1536x1536 images as fixed scale image.
python scripts/hpa_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-1536-test.zip \
    --cell_mask_directory data/input/hpa-test-mask-v2-1536.zip \
    --output_directory data/input/hpa-test-cell-crop-v2-192-from-1536.zip \
    --image_size 192

Training

# Train image-level classifier
python scripts/cam_consistency_training/run.py train \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Train cell-level classifier
python scripts/cell_crop/run.py train \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

If you want to train on multiple GPUs, use a launcher like torch.distributed.launch and pass --local_rank option. You can override the fields in the config by passing an argument like field_name=${value} (e.g. fold_index=1). We trained 5 folds for all models used in the final submission pipeline. The config files are located in scripts/cam_consistency_training/configs and scripts/cell_crop/configs. We trained the models in the following order.

  1. scripts/cam_consistency_training/configs/eff-b2-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  2. scripts/cam_consistency_training/configs/eff-b5-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  3. scripts/cam_consistency_training/configs/eff-b7-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  4. scripts/cam_consistency_training/configs/eff-b2-cutmix-pubhpa-768-to-1536.yaml
  5. Do predict_valid and concat_valid_predictions (described below) for each model and save the average of the output files under data/working/consistency_training/b2-1536-b2-b5-b7-768-avg/.
  6. scripts/cam_consistency_training/configs/eff-b2-focal-stage2-b2b2b5b7avg.yaml
  7. scripts/cell_crop/configs/resnest50-bce-from768-cutmix-softpl.yaml
  8. Do predict_valid and concat_valid_predictions for each model and save the average of the output files under data/working/image-level-and-cell-crop-both-5folds/.
  9. scripts/cam_consistency_training/configs/eff-b2-focal-stage3.yaml
  10. scripts/cam_consistency_training/configs/eff-b2-focal-stage3-cos.yaml
  11. scripts/cell_crop/configs/resnest50-bce-from768-stage3.yaml
  12. scripts/cell_crop/configs/resnest50-bce-from1536-stage3-cos.yaml

Inference

Validation Set

# Image-level classifier inference
python scripts/cam_consistency_training/run.py predict_valid \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Cell-level classifier inference
python scripts/cell_crop/run.py predict_valid \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

# Concatenate the predictions for each fold to obtain the OOF prediction for the entire training data
python scripts/cam_consistency_training/run.py concat_valid_predictions \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml
python scripts/cell_crop/run.py concat_valid_predictions \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

Test Set

# Image-level classifier inference
python scripts/cam_consistency_training/run.py predict_test \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Cell-level classifier inference
python scripts/cell_crop/run.py predict_test \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

# Make our final submission with post-processing
python scripts/average_predictions.py \
    --orig_size_cell_mask_directory data/input/hpa-test-mask-v2.zip \
    "data/working/consistency_training/eff-b2-focal-stage3/0" \
    "data/working/consistency_training/eff-b2-focal-stage3/1" \
    "data/working/consistency_training/eff-b2-focal-stage3/2" \
    "data/working/consistency_training/eff-b2-focal-stage3/3" \
    "data/working/consistency_training/eff-b2-focal-stage3/4" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/0" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/1" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/2" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/3" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/4" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/0" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/1" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/2" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/3" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/4" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/0" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/1" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/2" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/3" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/4" \
    --edge_area_threshold 80000 --center_area_threshold 32000

Use the code on Kaggle Notebook

Use docker to zip the source code and the wheels of the dependencies and upload them as a dataset.

docker run --rm -it -v /path/to/this/repo:/tmp/workspace -w /tmp/workspace/ gcr.io/kaggle-images/python bash ./build_zip.sh

In Kaggle Notebook, when you copy the code as shown below, you can run it the same way as your local environment.

# Make a working directory
!mkdir -p /kaggle/tmp

# Change the current directory
cd /kaggle/tmp

# Copy source code from the uploaded dataset
!cp -r /kaggle/input/<your-dataset-name>/* .

# You can use it as well as local environment
!python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask ...
You might also like...
 Kaggle: Cell Instance Segmentation
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Winning solution of the Indoor Location & Navigation Kaggle competition
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Owner
null
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

null 68 Dec 9, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 3, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

null 44 Jun 27, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

null 12 Oct 25, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

null 2 Jul 25, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022