Revisting Open World Object Detection

Overview

Revisting Open World Object Detection

Installation

See INSTALL.md.

Dataset

Our new data division is based on COCO2017. We divide the training set into four tasks, in which each task has 20 categories. For each task, we obtained images containing the categories of each task from the training set, and removed the annotation information of other categories in these pictures during training. In each task, 1000 images are sampled as the validation set. And we de duplicate the training set and the validation set. For the testing set, we adopt the validation set of COCO2017, which contains relatively complete annotation information.

The data files are at ./datasets/Main/.

You might also like...
Auto-Lama combines object detection and image inpainting to automate object removals
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

Open-World Entity Segmentation
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Pytorch implementation for
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

Comments
  • Code for creating the benchmark

    Code for creating the benchmark

    Hi there,

    Thank you for the great work. I have read your paper and think this new setting is a milestone on real OWOD.

    I can't find the code for creating the benchmark with label integrity and data specificity, it was usually in the 'coco_util' folder under 'dataset'. Could you please instruct me where to find it?

    Thank you

    opened by Jiyang-Zheng 1
  • Thank you for sharing

    Thank you for sharing

    But there may be some bugs during re-running, ex. no init file, skip some imports, logic of some parameters. For example, I wondered that 'Non-existent config key: OWOD.CLUSTERING.UNK_THRESH' means 'UNK_THRESH' is not under 'CLUSTERING', but in two config files, it declared differently.

    Looking forward for your further completion.

    opened by Yijing-c 0
  • Code for training CEC and replicate the results

    Code for training CEC and replicate the results

    Hi,

    thanks for your work. I was wondering where is the code of your CEC? Looking at OWOD files I don t see much difference with yours. (I assume the CEC code might be in that file).

    Thank you!

    opened by tldoan 0
  • Code to Generate score_store files

    Code to Generate score_store files

    https://github.com/RE-OWOD/RE-OWOD/blob/6257e7bcce012706aff7952ebad5f4da918987de/detectron2/modeling/roi_heads/roi_heads.py#L326

    I guess this code is used to load Selective Search results. Could you provide the code to generate those files?

    opened by husonchen 1
Owner
null
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

null 5 Dec 10, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

null 3 Jan 26, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Su Pang 254 Dec 16, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 4, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021