Custom Object Tracking
Introduction
This repo provides function call to track multi-objects in videos with a given trained object detection model and a source video file as inputs. The tracking approach used in the repo is DeepSort - Simple Online and Realtime Tracking with a Deep Association Metric
Installation
Please install Tensorflow 2 Object Detection API and add the path to your environment.
Usage
1. Clone the github repository
git clone https://github.com/sek788432/Custom_Object_Tracking.git
2. Execution (In two ways)
- saved_model_path: your own object detection model ckpt path
- test_path: test video path
- label_map_path: label_map.pbtxt path
- deep_sort_model: deep sort model path
- output_path: output video path
- min_score_thresh: the minimum score threshold of object detection model
- Run tracking.py
- e.g.
cd Custom_Object_Tracking/objectTracker/ python tracking.py \ --saved_model_path=exported-models/ssd_resnet50_119ckpt \ --test_path=test_video.mp4 \ --label_map_path=label_map.pbtxt \ --deep_sort_model=data/mars-small128.pb \ --output_path=test_video_tracking.mp4 \ --min_score_thresh=.5
- Call TrackVideo function
- e.g.
from Custom_Object_Tracking.objectTracker.tracking import TrackVideo TrackVideo(label_path, model_path, video_path, output_path, threshold, deep_sort_model)