A Minimalist Approach to Offline Reinforcement Learning
TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weighted behavior cloning loss is added to the policy update and (2) the states are normalized. Unlike competing methods there are no changes to architecture or underlying hyperparameters.
Usage
Paper results were collected with MuJoCo 1.50 (and mujoco-py 1.50.1.1) in OpenAI gym 0.17.0 with the D4RL datasets. Networks are trained using PyTorch 1.4.0 and Python 3.6.
The paper results can be reproduced by running:
./run_experiments.sh