Learning Time-Critical Responses for Interactive Character Control

Overview

Learning Time-Critical Responses for Interactive Character Control

teaser

Abstract

This code implements the paper Learning Time-Critical Responses for Interactive Character Control. This system implements teacher-student framework to learn time-critically responsive policies, which guarantee the time-to-completion between user inputs and their associated responses regardless of the size and composition of the motion databases. This code is written in java and Python, based on Tensorflow2.

Publications

Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. 2021. Learning Time-Critical Responses for Interactive Character Control. ACM Trans. Graph. 40, 4, 147. (SIGGRAPH 2021)

Project page: http://mrl.snu.ac.kr/research/ProjectAgile/Agile.html

Paper: http://mrl.snu.ac.kr/research/ProjectAgile/AGILE_2021_SIGGRAPH_author.pdf

Youtube: https://www.youtube.com/watch?v=rQKuvxg5ZHc

How to install

This code is implemented with Java and Python, and was developed using Eclipse on Windows. A Windows 64-bit environment is required to run the code.

Requirements

Install JDK 1.8

Java SE Development Kit 8 Downloads

Install Eclipse

Install Eclipse IDE for Java Developers

Install Python 3.6

https://www.python.org/downloads/release/python-368/

Install pydev to Eclipse

https://www.pydev.org/download.html

Install cuda and cudnn 10.0

CUDA Toolkit 10.0 Archive

NVIDIA cuDNN

Install Visual C++ Redistributable for VS2012

Laplacian Motion Editing(PmQmJNI.dll) is implemented in C++, and VS2012 is required to run it.

Visual C++ Redistributable for Visual Studio 2012 Update 4

Install JEP(Java Embedded Python)

Java Embedded Python

This library requires a part of the Visual Studio installation. I don't know exactly which ones are needed, but I'm guessing .net framework 3.5, VC++ 2015.3 v14.00(v140). Installing Visual Studio 2017 or later may be helpful.

Install Tensoflow 1.14.0

pip install tensorflow-gpu==1.14.0

Install this repository

We recommend downloading through Git in Eclipse environment.

  1. Open Git Perspective in Elcipse
  2. Paste repository url and clone repository ( 'https://git.ncsoft.net/scm/private_khlee/private-khlee-test.git' )
  3. Select all projects in Working Tree
  4. Right click and select Import Projects, and Import existing Eclipse projects.

Or you can just download the repository as Zip file and extract it, and import it using File->Import->General->Existing Projects into Workspace in Eclipse.

Install third party library

This code uses Interactive Character Animation by Learning Multi-Objective Control for learning the student policy.

Download required third pary library files(ThirdPartyDlls.zip) and extract it to mrl.motion.critical folder.

Dataset

The entire data used in the paper cannot be published due to copyright issues. This repository contains only minimal motion dataset for algorithm validation. SNU Motion Database was used for martial arts movements, CMU Motion Database was used for locomotion.

How to run

Eclipse

All of the instructions below are assumed to be executed based on Eclipse. Executable java files are grouped in package mrl.motion.critical.run of project mrl.motion.critical.

  • You can directly open source file with Ctrl+Shift+R
  • You can run the currently open source file with Ctrl+F11.
  • You can configure program arguments in Run->Run Configurations menu.

Pre-trained student policy

You can see the pre-trained network by running RuntimeMartialArtsControlModule.java. Pre-trained network file is located at mrl.python.neural\train\martial_arts_sp_da

  • 1, 2 : walk, run
  • 3,4,5,6 : martial arts actions
  • q,w,e,r,t : control critical response time

How to train

  1. Data Annotation & Configuration
    • You can check motion data list and annotation information by executing MAnnotationRun.java.
  2. Model Configuration
    • Action list, critical response time of each action, user input model and error metric is defined at MartialArtsConfig.java
  3. Preprocessing
    • You can precompute data table for pruning by executing DP_Preprocessing.java
    • The data file will be located at mrl.motion.critical\output\dp_cache
  4. Training teacher policy
    • You can train teacher policy by executing LearningTeacherPolicy.java
    • The result will be located at mrl.motion.critical\train_rl
  5. Training data for student policy
    • You can generate training data for student policy by executing StudentPolicyDataGeneration.java
    • The result will be located at mrl.python.neural\train
  6. Training student policy
    • You can train student policy by executing mrl.python.neural\train_rl.py
    • You need to set program arguments in Run->Run Configurations menu.
      • arguments format :
      • ex) martial_arts_sp new 0.0001
  7. Running student policy
    • You can see the trained student policy by running RuntimeMartialArtsControlModule.java.
    • This class will be load student policy located at mrl.python.neural\train.
You might also like...
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

CharacterGAN: Few-Shot Keypoint Character Animation and Reposing
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Implementation of character based convolutional neural network
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

GeneralOCR is open source Optical Character Recognition based on PyTorch.
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

An addon uses SMPL's poses and global translation to drive cartoon character in Blender.
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

Owner
Movement Research Lab
Our research group explores new ways of understanding, representing, and animating human movements.
Movement Research Lab
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work ?? Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 9, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 3, 2023
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

null 19 Oct 11, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 9, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 2, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 4, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022