Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

Overview

EPSR (Enhanced Perceptual Super-resolution Network) paper

This repo provides the test code, pretrained models, and results on benchmark datasets of our work. We (IPCV_team) won the first place in PIRM2018-SR competition (region 1). We were also ranked as second and thrid in region 2 and 3 respectively. For details refer to our recently accepted paper in ECCV2018 PIRM Workshop.

"Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network", Subeesh Vasu, Nimisha T. M. and A. N. Rajagopalan, Perceptual Image Restoration and Manipulation (PIRM) Workshop and Challenge, Eurpean Conference on Computer Vision Workshops (ECCVW 2018), Munich, Germany, September 2018. [arXiv]

BibTeX

 @inproceedings{vasu2018analyzing,
    author = {Vasu, Subeesh and T.M., Nimisha and Rajagopalan, A.N.},
    title = {Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network},
    booktitle = {European Conference on Computer Vision (ECCV) Workshops},
    year = {2018}}

Results

Visual comparison for 4× SR with bicubic interpolation model on PIRM-self, BSD100, and Urban100 datasets. Here IHR refers to the ground truth HR image. SRCNN, EDSR, DBPN, ENet, and CX are existing works. EPSR1, EPSR2, and EPSR3 are the results of our approach (EPSR) corresponding to region 1, 2, and 3 of PIRM-SR challenge. BNet1, BNet2, and BNet3 are the results of our baseline network.

drawing

Perception-distortion trade-off between BNet and EPSR. For both methods, the above plot has the values corresponding to 19 model weights which span different regions on the perception-distortion plane and the corresponding curves that best fit these values.

drawing

Performance comparison of top 9 methods from PIRM-SR challenge. Methods are ranked based on the PI and RMSE values corresponding to the test data of PIRM-SR. The entries from our approach are highlighted in red. Methods with a marginal difference in PI and RMSE values share the same rank and are indicated with a " * ".

Test

The code is built on the official implementation of EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0) with Titan X GPU. Refer EDSR (PyTorch) for other dependencies. Test code of EPSR can be found in EPSR_testcode.

Results on public benchmark datasets

References

[SRCNN] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. ECCV 2014

[EDSR] Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CVPR workshops 2017

[DBPN] Haris, M., Shakhnarovich, G., Ukita, N.: Deep backprojection networks for super-resolution. CVPR 2018

[ENet] Sajjadi, M.S., Sch ̈olkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution through automated texture synthesis. ICCV 2017

[CX] Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L. Learning to maintain natural image statistics. arXiv preprint arXiv:1803.04626 (2018)

[PIRM-SR challenge] Blau, Y., Mechrez, R., Timofte, R. 2018 PIRM Challenge on Perceptual Image Super-resolution. arXiv preprint arXiv:1809.07517 (2018)

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their codes of EDSR PyTorch version.

You might also like...
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Source code for our paper
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Implementation of paper:
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Comments
  • Configuring the dataset directories for training the model

    Configuring the dataset directories for training the model

    I, for the love of God, cannot figure out how to configure the DIV2K dataset directory in order to train the model. I have a folder named div2k inside the data directory and inside the div2k folder are the folder DIV2K_train_HR and DIV2k_valid_HR.

    However when I run the training loop, I get the error data.div2k has no attribute DIV2K_train_HR.

    Please help me by providing the correct configuration details.

    opened by shazib-summar 5
  • Resolution change on input image

    Resolution change on input image

    Hello. Thanks for your project's code! I configured your project on my machine. I tried with some images from Urban100 database and all is working very well!

    And now I have a little question: For example, if I need to scale input image with resolution 640x480 to 1920x1080(or something like this size) is it necessary to train model or I can set some parameters in demo.sh for command line? And if I can which parameter I need to put in to demo.sh?

    Because images size in Urban100 less than 256, and if I use images with >256 resolution size, the code is crashing.

    Many Thanks!

    opened by PavelPenyugalov 5
Owner
Subeesh Vasu
Post-doctoral Researcher, Computer Vision Lab
Subeesh Vasu
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 1, 2023
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

null 20 Jul 29, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 1, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 6 Oct 20, 2021
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 1, 2023
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022