Course materials for a 3-day seminar "Machine Learning and NLP: Advances and Applications" at New College of Florida

Overview

Machine Learning and NLP: Advances and Applications

This repository hosts the course materials used for a 3-day seminar "Machine Learning and NLP: Advances and Applications" as part of Independent Study Period 2020 at New College of Florida.

Note that the seminar was held in Jan 2020, and the content may be a little bit oudated (as of Feb 2022). Please also refer to a Fall 2021 full semester course "CIS6930 Topics in Computing for Data Science", which covers much wider (and a little bit newer) Deep Learning topics.

Syllabus

Course Description

This 3-day course provides students with an opportunity to learn Machine Learning and Natural Language Processing (NLP) from basics to applications. The course covers some state-of-the-art NLP techniques including Deep Learning. Each day consists of a lecture and a hands-on session to help students learn how to apply those techniques to real-world applications. During the hands-on session, students will be given assignments to develop programming code in Python. Three days are too short to fully understand the concepts that are covered by the course and learn to apply those techniques to actual problems. Students are strongly encouraged to complete reading assignments before the lecture to be ready for the course assignments, and bring a lot of questions to the course. :)

Learning Objectives

Students successfully completing the course will

  • demonstrate the ability to apply machine learning and natural language processing techniques to various types of problems.
  • demonstrate the ability to build their own machine learning models using Python libraries.
  • demonstrate the ability to read and understand research papers in ML and NLP.

Course Outline

  • Wed 1/22 Day 1: Machine Learning basics [Slides]

    • Machine learning examples
    • Problem formulation
    • Evaluation and hyper-parameter tuning
    • Data Processing basics with pandas
    • Machine Learning with scikit-learn
    • Hands-on material: [ipynb] Open In Colab
  • Thu 1/23 Day 2: NLP basics [Slides]

    • Unsupervised learning and visualization
    • Topic models
    • NLP basics with SpaCy and NLTK
    • Understanding NLP pipeline for feature extraction
    • Machine learning for NLP tasks (text classification, sequential tagging)
    • Hands-on material [ipynb] Open In Colab
    • Follow-up
      • Commonsense Reasoning (Winograd Schema Challenge)
  • Fri 1/24 Day 3: Advanced techniques and applications [Slides]

    • Basic Deep Learning techniques
    • Word embeddings
    • Advanced Deep Learning techniques for NLP
    • Problem formulation and applications to (non-)NLP tasks
    • Pre-training models: ELMo and BERT
    • Hands-on material: [ipynb] Open In Colab
    • Follow-up
      • The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time
      • Cross-lingual word/sentence embeddings

Reading Assignments & Recommendations:

The following online tutorials for students who are not familiar with the Python libraries used in the course. Each day will have a hands-on session that requires those libraries. Please do not expect to have enough time to learn how to use those libraries during the lecture.

The following list is a good starting point.

The course will cover the following papers as examples of (non-NLP) applications (probably in Day 3.) Students who'd like to learn how to apply Deep Learning techniques to your own problems are encouraged to read the following papers.

  • [1] A. Asai, S. Evensen, B. Golshan, A. Halevy, V. Li, A. Lopatenko, D. Stepanov, Y. Suhara, W.-C. Tan, Y. Xu, "HappyDB: A Corpus of 100,000 Crowdsourced Happy Moments" Proc LREC 18, 2018. [Paper] [Dataset]
  • [2] S. Evensen, Y. Suhara, A. Halevy, V. Li, W.-C. Tan, S. Mumick, "Happiness Entailment: Automating Suggestions for Well-Being," Proc. ACII 2019, 2019. [Paper]
  • [3] Y. Suhara, Y. Xu, A. Pentland, "DeepMood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks," Proc. WWW '17, 2017. [Paper]
  • [4] N. Bhutani, Y. Suhara, W.-C. Tan, A. Halevy, H. V. Jagadish, "Open Information Extraction from Question-Answer Pairs," Proc. NAACL-HLT 2019, 2019. [Paper]

Computing Resources:

The course requires students to write code:

  • Students are expected to have a personal computer at their disposal. Students should have a Python interpreter and the listed libraries installed on their machines.

The hands-on sessions will require the following Python libraries. Please install those libraries on your computer prior to the course. See also the reading assignment section for the recommended tutorials.

  • pandas
  • scikit-learn
  • gensim
  • spacy
  • nltk
  • torch (PyTorch)
You might also like...
Materials and information for my PyCascades 2021 Presentation

Materials and information for PyCascades 2021 Presentation: Sparking Creativity in LED Art with CircuitPython

Blender Add-on to Add Metal Materials to Your Scene
Blender Add-on to Add Metal Materials to Your Scene

Blender QMM (Quick Metal Materials) Blender Addon to Add Metal Materials to Your Scene Installation Download the latest ZIP from Releases. Usage This

JimShapedCoding Python Crash Course 2021

Python CRASH Course by JimShapedCoding - Click Here to Start! This Repository includes the code and MORE exercises on each section of the entire cours

Assignment for python course, BUPT 2021.

pyFuujinrokuDestiny Assignment for python course, BUPT 2021. Notice username and password must be ASCII encoding. If username exists in database, syst

This is an online course where you can learn and master the skill of low-level performance analysis and tuning.
This is an online course where you can learn and master the skill of low-level performance analysis and tuning.

Performance Ninja Class This is an online course where you can learn to find and fix low-level performance issues, for example CPU cache misses and br

An interactive course to git

OperatorEquals' Sandbox Git Course! Preface This Git course is an ongoing project containing use cases that I've met (and still meet) while working in

Do you need a screensaver for CircuitPython? Of course you do

circuitpython_screensaver Do you need a screensaver for CircuitPython? Of course you do Demo video of dvdlogo screensaver: screensaver_dvdlogo.mp4 Dem

Tutor plugin for integration of Open edX with a Richie course catalog
Tutor plugin for integration of Open edX with a Richie course catalog

Richie plugin for Tutor This is a plugin to integrate Richie, the learning portal CMS, with Open edX. The integration takes the form of a Tutor plugin

Owner
Yoshi Suhara
Yoshi Suhara
PyDateWaiter helps waiting special day & calculating remain days till that day with Python code.

PyDateWaiter (v.Beta) PyDateWaiter helps waiting special day(aniversary) & calculating remain days till that day with Python code. Made by wallga gith

wallga 1 Jan 14, 2022
All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Python3-cursoemvideo-exercises - All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Renan Barbosa 3 Jan 17, 2022
A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites.

web check A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites. What it does The script wi

Jaime Álvarez 52 Mar 15, 2022
A Puzzle A Day Keep the Work Away

A Puzzle A Day Keep the Work Away No moyu again!

P4SSER8Y 5 Feb 12, 2022
Building an Investment Portfolio for Day Trade with Python

Montando um Portfólio de Investimentos para Day Trade com Python Instruções: Para reproduzir o projeto no Google Colab, faça o download do repositório

Paula Campigotto 9 Oct 26, 2021
A python script that changes your desktop background based on current weather and time of the day.

Desktop background wallpaper, based on current weather and time A python script that changes your computer's desktop background based on current weath

Maj Gaberšček 1 Nov 16, 2021
This repository contains each day of Advent of Code 2021 that I've done.

Advent of Code - 2021 I will use this repository as my Advent of Code1 (AoC) repo for the 2021 challenge. I'm changing how I am tackling the problems

Brett Chapin 2 Jan 12, 2022
Whole-day timezone comparison

Timezone Converter Compare a full day of your local timezone with foreign ones $ timezone-converter tijuana --zone $ timezone-converter tijuana new_yo

Iago Alonso 12 Nov 24, 2022
Tracking development of the Class Schedule Siri Shortcut, an iOS program that checks the type of school day and tells you class scheduling.

Class Schedule Shortcut Tracking development of the Class Schedule Siri Shortcut, an iOS program that checks the type of school day and tells you clas

null 3 Jun 28, 2022
NasaApod - Astronomy Picture of the Day

Astronomy Picture of the Day Get interesting Astronomical pictures with a brief

Shripad Rao 1 Feb 15, 2022