A minimal implementation of Gaussian process regression in PyTorch

Overview

pytorch-minimal-gaussian-process

In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare bone sometimes. Here is a minimal implementation of Gaussian process regression in PyTorch.

The implementation generally follows Algorithm 2.1 in Gaussian Process for Machine Learning (Rassmussen and Williams, 2006).

Features

  • Gaussian process regression with squared exponential kernel.
  • Hyperparameter optimization via marginal likelihood maximization using Pytorch built-in autograd functionality. (See demo.ipynb)
  • Unittesting using Pytest.

Dependency

  • Numpy
  • PyTorch
  • PyTest
  • Matplotlib (for demo)

How to Use

from gp import GP

# generate data
X = torch.randn(100,1)
y = torch.sin(X * 2 * np.pi /4). + torch.randn(100, 1) * 0.1
grid = torch.linspace(-5, 5, 200)[:,None]

# run GP
gp = GP()  # you may specify initial hyperparameters using keyword arguments
gp.fit(X, y)
mu, var = gp.forward(grid)

Unittesting

$ pytest

See also

  • GPyTorch: A full-featured Gaussian process package based on PyTorch.
You might also like...
Minimal PyTorch implementation of YOLOv3
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yolov5-lite - Minimal PyTorch implementation of YOLOv5
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Supplementary code for the AISTATS 2021 paper
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

Github for the conference paper GLOD-Gaussian Likelihood OOD detector
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Comments
  • [Feat] Gaussian process classifier

    [Feat] Gaussian process classifier

    What has changed

    1. Binary classification에서 Laplace approximation을 사용한 Gaussian process classification이 추가되었습니다.
    2. 데모와 test도 함께 추가되었습니다.
    3. Readme도 업데이트 되었습니다.

    Additional info

    Before submitting

    • [X] Did you list all the changes introduced by this PR?
    • [X] Did you verify tests pass locally with your changes?
    • [X] Did you update the sample configs and documentations with your changes?
    opened by emckwon 1
Owner
Sangwoong Yoon
PhD student at Seoul National University, studying machine learning
Sangwoong Yoon
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 7, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 2, 2021
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save <SAVE_NAME> --data <PATH_TO_DATA_DIR> --dataset <DATASET> --model <model_name> [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" (SPNLP@ACL2022)

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 6, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

null 3k Jan 2, 2023
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 2, 2023