FSL-Mate: A collection of resources for few-shot learning (FSL).

Overview

logo


FSL-Mate is a collection of resources for few-shot learning (FSL).

In particular, FSL-Mate currently contains

  • FewShotPapers: a paper list which tracks the research advances on FSL
  • PaddleFSL: a PaddlePaddle-based python library for FSL

We are endeavored to constantly update FSL-Mate. Hopefully, it can make FSL easier.

News!

  • [11/21] Add FSL papers published in ICCV 2021, EMNLP 2021 and NeurIPS 2021.

  • [08/21] Add FSL papers published in AAAI 2021, ICML 2021, SIGIR 2021, ACL-IJCNLP 2021, KDD 2021, and IJCAI 2021.

  • [08/21] PaddleFSL now supports image classification, relation classification and FewClue tasks.

Cite Us

Please cite our paper if you find it helpful.

@article{wang2020generalizing,
  title={Generalizing from a few examples: A survey on few-shot learning},
  author={Wang, Yaqing and Yao, Quanming and Kwok, James T and Ni, Lionel M},
  journal={ACM Computing Surveys},
  volume={53},
  number={3},
  pages={1--34},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Contact

We welcome advices and feedbacks for FSL-Mate. Please feel free to open an issue or contact Yaqing Wang.

Comments
  • re-structure the project with standard template

    re-structure the project with standard template

    Description

    try to finish the plan: https://github.com/tata1661/FSL-Mate/issues/24

    I don't modify the content of source code but the project structure which is added into some more useful tools to make it more extensive, eg:

    • Makefile: workflow scripts
    • requirements-dev.txt: dependency packages only used in developemtn
    • pyproject.toml: store the project metadata which can be used in many opensource toos, eg: pytest, mypy, pylint.

    Another work in this pr: move the paddlefsl to the root dir to make it more clear about the source code.

    To get the details, you can read the project tree structure in files of pr.

    opened by wj-Mcat 11
  • Implement MAML meta-opt

    Implement MAML meta-opt

    Description

    Try to refactor MAML meta learning algriothm to make it more reusable in paddle-based applications.

    Consideration

    In MAML module, there are three things which is wired against the normal model application code:

    • clone module which retrain the computation graph
    • accumulate the gradient on cloned model
    • backward the gradient based on query set data

    Design

    class BaseLearner(ABC):
        """Abstract Base Learner Class"""
        def __init__(self, module: Layer, optimizer: Optimizer) -> None:
            """The constructor of BaseLearner
    
            Args:
                module (Layer): the model to be trained
            """
            super().__init__()
            self._source_module = module
            self.cloned_module = None
            self.optimizer = optimizer
    
        def new_cloned_model(self,) -> Layer:
            """get the cloned model and keep the computation gragh
    
            Returns:
                Layer: the cloned model
            """
            self.cloned_module = clone_model(self._source_module)
            return self.cloned_module
    
        @abstractmethod
        def adapt(self, train_loss: Tensor) -> None:
            """Adapt the model to the current training loss
    
            Args:
                train_loss (Tensor): the current training loss
            """
            raise NotImplementedError
    
    
        @abstractmethod
        def step(self) -> None:
            """Perform a step of training
    
            Args:
                loss (float): _description_
    
            Raises:
                NotImplementedError: _description_
            """
            raise NotImplementedError
    
        def clear_grad(self):
            """clear the gradient in the computation graph
            """
            self.optimizer.clear_grad()
    
    • adapt: accumulate the gradient on cloned model
    • new_cloned_model: clone and save the model
    • step: run step on optimizer in parameters of source model
    • clear_grad: clear the gradient
    opened by wj-Mcat 6
  • add CI & CD feature

    add CI & CD feature

    Introduction

    In this PR, it has done the followting things:

    • [ ] do unit test using github action when pushed into repo.
    • [ ] automaticlly deploy the package to the pypi server when the master branch changed

    The document code base I will do it in next PR so that we can focus different things in different pr.

    opened by wj-Mcat 5
  • (InvalidArgument) Tensor holds the wrong type, it holds int, but desires to be int64_t.

    (InvalidArgument) Tensor holds the wrong type, it holds int, but desires to be int64_t.

    Run the sample code and report an error. The error information and code information are as follows.

    ValueError: (InvalidArgument) Tensor holds the wrong type, it holds int, but desires to be int64_t. [Hint: Expected valid == true, but received valid:0 != true:1.] (at C:\home\workspace\Paddle_release\paddle/fluid/framework/tensor_impl.h:33) [operator < softmax_with_cross_entropy > error]

    from paddlefsl.datasets import MiniImageNet import paddle import paddlefsl from paddlefsl.model_zoo import maml

    TRAIN_DATASET = paddlefsl.datasets.MiniImageNet(mode='train') VALID_DATASET = paddlefsl.datasets.MiniImageNet(mode='valid') TEST_DATASET = paddlefsl.datasets.MiniImageNet(mode='test') MODEL = paddlefsl.backbones.Conv(input_size=(3, 84, 84), output_size=5)

    def main(): train_dir = maml.meta_training(train_dataset=TRAIN_DATASET, valid_dataset=VALID_DATASET, ways=5, shots=1, model=MODEL, meta_lr=0.002, inner_lr=0.03, iterations=10000, meta_batch_size=32, inner_adapt_steps=5, report_iter=10)

    if name == 'main': main()

    opened by NNNNeverland 2
  • Paper addition

    Paper addition

    Hi!

    Thanks for creating this awesome repo!

    Would this paper by chance fit in this repo:

    Multi-level Semantic Feature Augmentation for One-shot Learning [paper] [code]

    opened by ashok-arjun 2
  • [Bug] Wrong head_position index in rc_position_embedding.py

    [Bug] Wrong head_position index in rc_position_embedding.py

    In rc_position_embedding.py line 69:

    head_position_vector = paddle.to_tensor(rc_vector[:, :, -1], dtype='int64')
    

    But in rc_init_vector.py line 208, the head_position_idx is -2 in rc_embedding.

    So I think it should be:

    head_position_vector = paddle.to_tensor(rc_vector[:, :, -2], dtype='int64')
    
    opened by King-Hell 1
  • [Feature Request] Meta Learner Based code

    [Feature Request] Meta Learner Based code

    Introduction

    After https://github.com/tata1661/FSL-Mate/pull/23 merged, we can convert all of examples, under examples/image_classification, to meta learner based examples.

    I have an online meeting with @tata1661 before, and we believe that it will be more concise if the model-zoo examples be replaced with meta learner (optim-based) . Let's get it on the way.

    opened by wj-Mcat 1
  • Bump pillow from 8.2.0 to 8.3.2 in /PaddleFSL

    Bump pillow from 8.2.0 to 8.3.2 in /PaddleFSL

    Bumps pillow from 8.2.0 to 8.3.2.

    Release notes

    Sourced from pillow's releases.

    8.3.2

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.2.html

    Security

    • CVE-2021-23437 Raise ValueError if color specifier is too long [hugovk, radarhere]

    • Fix 6-byte OOB read in FliDecode [wiredfool]

    Python 3.10 wheels

    • Add support for Python 3.10 #5569, #5570 [hugovk, radarhere]

    Fixed regressions

    • Ensure TIFF RowsPerStrip is multiple of 8 for JPEG compression #5588 [kmilos, radarhere]

    • Updates for ImagePalette channel order #5599 [radarhere]

    • Hide FriBiDi shim symbols to avoid conflict with real FriBiDi library #5651 [nulano]

    8.3.1

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.1.html

    Changes

    8.3.0

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.0.html

    Changes

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    8.3.2 (2021-09-02)

    • CVE-2021-23437 Raise ValueError if color specifier is too long [hugovk, radarhere]

    • Fix 6-byte OOB read in FliDecode [wiredfool]

    • Add support for Python 3.10 #5569, #5570 [hugovk, radarhere]

    • Ensure TIFF RowsPerStrip is multiple of 8 for JPEG compression #5588 [kmilos, radarhere]

    • Updates for ImagePalette channel order #5599 [radarhere]

    • Hide FriBiDi shim symbols to avoid conflict with real FriBiDi library #5651 [nulano]

    8.3.1 (2021-07-06)

    • Catch OSError when checking if fp is sys.stdout #5585 [radarhere]

    • Handle removing orientation from alternate types of EXIF data #5584 [radarhere]

    • Make Image.array take optional dtype argument #5572 [t-vi, radarhere]

    8.3.0 (2021-07-01)

    • Use snprintf instead of sprintf. CVE-2021-34552 #5567 [radarhere]

    • Limit TIFF strip size when saving with LibTIFF #5514 [kmilos]

    • Allow ICNS save on all operating systems #4526 [baletu, radarhere, newpanjing, hugovk]

    • De-zigzag JPEG's DQT when loading; deprecate convert_dict_qtables #4989 [gofr, radarhere]

    • Replaced xml.etree.ElementTree #5565 [radarhere]

    ... (truncated)

    Commits
    • 8013f13 8.3.2 version bump
    • 23c7ca8 Update CHANGES.rst
    • 8450366 Update release notes
    • a0afe89 Update test case
    • 9e08eb8 Raise ValueError if color specifier is too long
    • bd5cf7d FLI tests for Oss-fuzz crash.
    • 94a0cf1 Fix 6-byte OOB read in FliDecode
    • cece64f Add 8.3.2 (2021-09-02) [CI skip]
    • e422386 Add release notes for Pillow 8.3.2
    • 08dcbb8 Pillow 8.3.2 supports Python 3.10 [ci skip]
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • PaddleFSL add gnn

    PaddleFSL add gnn

    在examples/image_classification/添加 gnn_image_classification.py 用于MiniImageNet测试 在examples/relation_classification/ 添加 gnn_relation_classification.py 用于FewRel测试 在backbones/ 添加 gnn_iclr.py 在model_zoo/ 添加 gnn.py 在test/backbones/ 添加 gnn_iclr_test.py

    opened by Lieberk 0
  • 【PaddlePaddle Hackathon 2】93、在PaddleFSL将模型库中的MAML和ANIL转为优化算法api

    【PaddlePaddle Hackathon 2】93、在PaddleFSL将模型库中的MAML和ANIL转为优化算法api

    (此 ISSUE 为 PaddlePaddle Hackathon 第二期活动的任务 ISSUE,更多详见 【PaddlePaddle Hackathon 第二期】任务总览

    【任务说明】

    • 任务标题:在PaddleFSL将模型库中的MAML和ANIL转为优化算法api
    • 模型技术标签:PaddlePaddle, few-shot learning, meta learning
    • 任务难度:困难
    • 详细描述:在PaddleFSL中,小样本学习经典算法MAML和ANIL以模型方式提供。要求将它们转换成任何模型可调用的算法api。需要重新封装MAML和ANIL,设计其使用方式。可以参考learn2learn和higher的设计。

    【提交内容】

    • 设计文档,并提 PR 至 PaddlePaddle/community 的 rfcs/FSL-Mate 目录
    • 任务 PR 到 PaddleFSL
    • 任务单测文件
    • 调用路径:paddlefsl.metaopt.maml和paddlefsl.metaopt.anil

    【合入标准】

    在Omniglot和miniImageNet数据集的5-way 1-shot任务和5-way 5-shot任务进行测试。使用算法api版的MAML, ANIL获得与原汇报结果一致或更高的效果。

    【技术要求】

    熟练掌握 Python

    【答疑交流】

    • 如果在开发中对于上述任务有任何问题,欢迎在本 ISSUE 下留言交流。
    • 对于开发中的共性问题,在活动过程中,会定期组织答疑,请大家关注官网&QQ群的通知,及时参与。
    PaddlePaddle Hackathon 
    opened by TCChenlong 0
  • remove .DS_Store file from the project

    remove .DS_Store file from the project

    There are some unused files in the project, eg:.DS_Store file and __pycache__ directory.

    You have set the configuration to ignore .DS_Store file, but it only ignore the file under the top directory of project which is disable for another .DS_Store files. So as the __pycache__ directory.

    opened by wj-Mcat 0
  • Exception has occurred: ModuleNotFoundError,No module named 'paddle.nn'

    Exception has occurred: ModuleNotFoundError,No module named 'paddle.nn'

    运行gnn的例子时,提示报错Exception has occurred: ModuleNotFoundError,No module named 'paddle.nn' 我的环境是 1080TI Ubuntu20.04 nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Fri_Dec_17_18:16:03_PST_2021 Cuda compilation tools, release 11.6, V11.6.55 Build cuda_11.6.r11.6/compiler.30794723_0 NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 在conda中安装了paddlepaddle-gpu版本2.3.1 paddle-bfloat 0.1.7 pypi_0 pypi paddlehelix 1.0.1 pypi_0 pypi paddlepaddle-gpu 2.3.1.post116 pypi_0 pypi pandas 1.3.5 pypi_0 pypi pgl 2.2.3.post0 pypi_0 pypi

    opened by chch2010523 0
  • ModuleNotFoundError: No module named 'pahelix'

    ModuleNotFoundError: No module named 'pahelix'

    Install problem 1.1.0

    File "/home/fangsifan/Few_Shot/FSL-Mate/PaddleFSL/paddlefsl/backbones/gin.py", line 17, in from pahelix.model_zoo.pretrain_gnns_model import PretrainGNNModel

    ModuleNotFoundError: No module named 'pahelix'

    opened by JoanSF 6
  • [Feature Request] refactor the project

    [Feature Request] refactor the project

    Description

    In the suggested structuring python project, there are some conventional structures & files & naming-style to make the project more readable and scalable. And what's more, there are some github Action tools to run CI to lint & test code, run CD to publish the project.

    Thought

    I also maintain the project: python-wechaty and paddle-prompt. So I'm familiar with the related opensource toolkits in python project. I can create an another pr to complete this If you agree with it ? How do you think about it ? @tata1661

    opened by wj-Mcat 3
  • 【PaddlePaddle Hackathon 2】FSL-Mate 任务合集

    【PaddlePaddle Hackathon 2】FSL-Mate 任务合集

    大家好,非常高兴地告诉大家,第二期 PaddlePaddle Hackathon 开始了。PaddlePaddle Hackathon 是面向全球开发者的深度学习领域编程活动,鼓励开发者了解与参与 PaddlePaddle 开源社区。本次共有四大专区:PaddlePaddle、Paddle Family、Paddle Friends、Paddle Eval,共计100+个任务供大家认领。详细信息可以参考 PaddlePaddle Hackathon 说明。大家是否已经迫不及待了呢~

    本 ISSUE 是 Paddle Friends 专区 FSL-Mate 方向任务合集。具体任务列表如下:

    | 序号 | 难度 | 任务 ISSUE | | ---- | ---- | --- | | 91 | ⭐️ | 新增random search超参数搜索api | | 92 | ⭐️⭐️ | 新增TPE超参数搜索api | | 93 | ⭐️⭐️⭐️ | 在PaddleFSL将模型库中的MAML和ANIL转为优化算法api |

    若想要认领本次活动任务,请至 PaddlePaddle Hackathon 2 Pinned ISSUE 完成任务 ISSUE 认领。

    活动官网:PaddlePaddle Hackathon 2

    PaddlePaddle Hackathon 
    opened by TCChenlong 0
  • 【PaddlePaddle Hackathon 2】91、新增random search超参数搜索api

    【PaddlePaddle Hackathon 2】91、新增random search超参数搜索api

    (此 ISSUE 为 PaddlePaddle Hackathon 第二期活动的任务 ISSUE,更多详见 【PaddlePaddle Hackathon 第二期】任务总览

    【任务说明】

    • 任务标题:新增random search超参数搜索api
    • 模型技术标签:PaddlePaddle,hyperparameter optimization
    • 任务难度:简单
    • 详细描述:随机搜索即在搜索空间随机的搜索超参数。它是一种不需要优化问题梯度的数值优化方法,也是常用的基线超参数搜索算法。可参考NNI或HyperOpt,实现random search的超参数搜索api。

    【提交内容】

    • 设计文档,并提 PR 至 PaddlePaddle/community 的 rfcs/FSL-Mate 目录
    • 任务 PR 到 PaddleFSL
    • 任务单测文件
    • 调用路径:paddlefsl.hpo.rand

    【合入标准】

    在Omniglot和miniImageNet数据集的5-way 1-shot任务和5-way 5-shot任务进行测试。使MAML, ANIL, ProtoNet and RelationNet使用random search 搜索出的超参数能达到比原汇报结果更高的效果。

    【技术要求】

    熟练掌握 Python

    【答疑交流】

    • 如果在开发中对于上述任务有任何问题,欢迎在本 ISSUE 下留言交流。
    • 对于开发中的共性问题,在活动过程中,会定期组织答疑,请大家关注官网&QQ群的通知,及时参与。
    PaddlePaddle Hackathon 
    opened by TCChenlong 2
  • 【PaddlePaddle Hackathon 2】92、新增TPE超参数搜索api

    【PaddlePaddle Hackathon 2】92、新增TPE超参数搜索api

    (此 ISSUE 为 PaddlePaddle Hackathon 第二期活动的任务 ISSUE,更多详见 【PaddlePaddle Hackathon 第二期】任务总览

    【任务说明】任务标题:新增TPE超参数搜索api

    • 模型技术标签:PaddlePaddle, hyperparameter optimization
    • 任务难度:中等
    • 详细描述:树状结构Parzen估计方法(treeparzen estimator method,TPE)是一种常用的基于树状结构 Parzen 密度估计的非标准贝叶斯优化算法,在高维空间表现很好。可参考scikit-optimize或NNI,实现TPE超参数搜索api。

    【提交内容】

    • 设计文档,并提 PR 至 PaddlePaddle/community 的 rfcs/FSL-Mate 目录
    • 任务 PR 到 PaddleFSL
    • 任务单测文件
    • 调用路径:paddlefsl.hpo.tpe

    【合入标准】

    在Omniglot和miniImageNet数据集的5-way 1-shot任务和5-way 5-shot任务进行测试。使MAML, ANIL, ProtoNet and RelationNet使用Bayesian optimization搜索出的超参数能达到比原汇报结果更高的效果。

    【技术要求】

    熟练掌握 Python,理解贝叶斯优化

    【答疑交流】

    • 如果在开发中对于上述任务有任何问题,欢迎在本 ISSUE 下留言交流。
    • 对于开发中的共性问题,在活动过程中,会定期组织答疑,请大家关注官网&QQ群的通知,及时参与。
    PaddlePaddle Hackathon 
    opened by TCChenlong 0
Owner
Yaqing Wang
Yaqing Wang
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 3, 2023
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 4, 2023
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

null 34 Oct 8, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image classification in order to learn more general purpose embeddings, and facilitate the test-time adaptation to novel visual categories.

Yassine 34 Dec 25, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 8, 2023
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 4, 2023
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 2, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

VIG@R&L 603 Jan 5, 2023
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

?? Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

null 1 Nov 18, 2021