The SVO-Probes Dataset for Verb Understanding

Overview

The SVO-Probes Dataset for Verb Understanding

This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object understanding in image--language models. This benchmark provides two positive and negative images for a given sentence. The negative image differs from the positive one with respect to either subject, verb, or object. Given a sentence, we test if a model can correctly classify both positive and negative images.

For a detailed description of our benchmark, please see the paper Probing Image–Language Transformers for Verb Understanding. Please cite this paper if you use the SVO-Probes benchmark in your work.

Files

  • svo_probes.csv: our raw data. Each row in the dataset consists of two <sentence,positive-image> and <sentence,negative-image> pairs. Each image is identified by a url and a unique id: pos_image_id (pos_url) or neg_image_id (neg_url) to mark the positive and negative images, respectively. Each image is also associated with subject-verb-object triplets (pos_triplet or neg_triplet) that can be seen in the image. The subj_neg, verb_neg, obj_neg columns specify the type of the negative: for example, subj_neg is True if the negative example is a subject negative.

  • image_urls.txt: a list of image urls used in our benchmark.

  • A Colab to analyze pre-trained models on SVO-Probes.

Disclaimer

This is not an official Google product. The SVO-Probes benchmark is created solely for research purposes and is not intended to be used in products. The images in our benchmark are retrieved from the Google Image Search; we expect our images to reflect distributional properties and biases similar to those returned by the Google Image Search API. Furthermore, our dataset is designed to have a similar vocabulary to the Conceptual Captions dataset so we expect our <Subject, Verb, Object> triplets to reflect biases in the Conceptual Captions.

License

The data is made available under the terms of the Creative Commons Attribution 4.0 International Public License (CC BY 4.0). You can find details at: https://creativecommons.org/licenses/by/4.0/legalcode")

If you have concerns or comments about the benchmark, please contact [email protected] and [email protected].

You might also like...
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

PyTorch implementation of the paper:  Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in a matter of minutes. Based on our experiments with a wide range of benchmarks, ProteinBERT usually achieves state-of-the-art performance. ProteinBERT is built on TenforFlow/Keras.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (SA), Tunisian Dialect Identification (TDI) and Reading Comprehension Question-Answering (RCQA)

 SDL: Synthetic Document Layout dataset
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Comments
  • Share image files from Cloud disk

    Share image files from Cloud disk

    Thanks for the code release! I came across some bad URLs while downloading the images in image_urls.txt. Could you please share a packed file for the images through GoogleDrive?

    opened by idealwhite 3
Owner
DeepMind
DeepMind
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

Google Research Datasets 52 Jun 21, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

null 272 Dec 15, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 8, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

null 74 Dec 13, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022