PTR
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"
If you use the code, please cite the following paper:
@article{han2021ptr,
title={PTR: Prompt Tuning with Rules for Text Classification},
author={Han, Xu and Zhao, Weilin and Ding, Ning and Liu, Zhiyuan and Sun, Maosong},
journal={arXiv preprint arXiv:2105.11259},
year={2021}
}
Requirements
The model is implemented using PyTorch. The versions of packages used are shown below.
-
numpy>=1.18.0
-
scikit-learn>=0.22.1
-
scipy>=1.4.1
-
torch>=1.3.0
-
tqdm>=4.41.1
-
transformers>=4.0.0
Baselines
Some baselines, especially the baselines using entity markers, come from the project [RE_improved_baseline].
Datasets
We provide all the datasets and prompts used in our experiments.
Run the experiments
(1) For TACRED
mkdir results
cd results
mkdir tacred
cd tacred
mkdir train
mkdir val
mkdir test
cd ..
cd ..
cd code_script
bash run_large_tacred.sh
(2) For TACREV
mkdir results
cd results
mkdir tacrev
cd tacrev
mkdir train
mkdir val
mkdir test
cd ..
cd ..
cd code_script
bash run_large_tacrev.sh
(3) For RETACRED
mkdir results
cd results
mkdir retacred
cd retacred
mkdir train
mkdir val
mkdir test
cd ..
cd ..
cd code_script
bash run_large_retacred.sh