I am trying to run your evaluation code on the pre-trained model.
I am running the python eval_action_wise.py --exp original_model
command as suggested in your README.
However, I am getting the following error.
python eval_action_wise.py --exp original_model
Program is running on: cpu
EVALUATING EXPERIMENT: original_model
Traceback (most recent call last):
File "/Users/paulpierzchlewicz/PycharmProjects/ProHPE/eval_action_wise.py", line 21, in <module>
inn.load(c.load_model_name, c.device)
File "/Users/paulpierzchlewicz/PycharmProjects/ProHPE/models/model.py", line 63, in load
self.load_state_dict(network_state_dict)
File "/Users/paulpierzchlewicz/PycharmProjects/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1406, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for poseINN:
Missing key(s) in state_dict: "inn.module_list.0.subnet1.0.weight", "inn.module_list.0.subnet1.0.bias", "inn.module_list.0.subnet1.2.weight", "inn.module_list.0.subnet1.2.bias", "inn.module_list.0.subnet2.0.weight", "inn.module_list.0.subnet2.0.bias", "inn.module_list.0.subnet2.2.weight", "inn.module_list.0.subnet2.2.bias", "inn.module_list.1.perm", "inn.module_list.1.perm_inv", "inn.module_list.2.subnet1.0.weight", "inn.module_list.2.subnet1.0.bias", "inn.module_list.2.subnet1.2.weight", "inn.module_list.2.subnet1.2.bias", "inn.module_list.2.subnet2.0.weight", "inn.module_list.2.subnet2.0.bias", "inn.module_list.2.subnet2.2.weight", "inn.module_list.2.subnet2.2.bias", "inn.module_list.3.perm", "inn.module_list.3.perm_inv", "inn.module_list.4.subnet1.0.weight", "inn.module_list.4.subnet1.0.bias", "inn.module_list.4.subnet1.2.weight", "inn.module_list.4.subnet1.2.bias", "inn.module_list.4.subnet2.0.weight", "inn.module_list.4.subnet2.0.bias", "inn.module_list.4.subnet2.2.weight", "inn.module_list.4.subnet2.2.bias", "inn.module_list.5.perm", "inn.module_list.5.perm_inv", "inn.module_list.6.subnet1.0.weight", "inn.module_list.6.subnet1.0.bias", "inn.module_list.6.subnet1.2.weight", "inn.module_list.6.subnet1.2.bias", "inn.module_list.6.subnet2.0.weight", "inn.module_list.6.subnet2.0.bias", "inn.module_list.6.subnet2.2.weight", "inn.module_list.6.subnet2.2.bias", "inn.module_list.7.perm", "inn.module_list.7.perm_inv", "inn.module_list.8.subnet1.0.weight", "inn.module_list.8.subnet1.0.bias", "inn.module_list.8.subnet1.2.weight", "inn.module_list.8.subnet1.2.bias", "inn.module_list.8.subnet2.0.weight", "inn.module_list.8.subnet2.0.bias", "inn.module_list.8.subnet2.2.weight", "inn.module_list.8.subnet2.2.bias", "inn.module_list.9.perm", "inn.module_list.9.perm_inv", "inn.module_list.10.subnet1.0.weight", "inn.module_list.10.subnet1.0.bias", "inn.module_list.10.subnet1.2.weight", "inn.module_list.10.subnet1.2.bias", "inn.module_list.10.subnet2.0.weight", "inn.module_list.10.subnet2.0.bias", "inn.module_list.10.subnet2.2.weight", "inn.module_list.10.subnet2.2.bias", "inn.module_list.11.perm", "inn.module_list.11.perm_inv", "inn.module_list.12.subnet1.0.weight", "inn.module_list.12.subnet1.0.bias", "inn.module_list.12.subnet1.2.weight", "inn.module_list.12.subnet1.2.bias", "inn.module_list.12.subnet2.0.weight", "inn.module_list.12.subnet2.0.bias", "inn.module_list.12.subnet2.2.weight", "inn.module_list.12.subnet2.2.bias", "inn.module_list.13.perm", "inn.module_list.13.perm_inv", "inn.module_list.14.subnet1.0.weight", "inn.module_list.14.subnet1.0.bias", "inn.module_list.14.subnet1.2.weight", "inn.module_list.14.subnet1.2.bias", "inn.module_list.14.subnet2.0.weight", "inn.module_list.14.subnet2.0.bias", "inn.module_list.14.subnet2.2.weight", "inn.module_list.14.subnet2.2.bias", "inn.module_list.15.perm", "inn.module_list.15.perm_inv".
Unexpected key(s) in state_dict: "inn.module_list.1.s1.0.weight", "inn.module_list.1.s1.0.bias", "inn.module_list.1.s1.2.weight", "inn.module_list.1.s1.2.bias", "inn.module_list.1.s2.0.weight", "inn.module_list.1.s2.0.bias", "inn.module_list.1.s2.2.weight", "inn.module_list.1.s2.2.bias", "inn.module_list.3.s1.0.weight", "inn.module_list.3.s1.0.bias", "inn.module_list.3.s1.2.weight", "inn.module_list.3.s1.2.bias", "inn.module_list.3.s2.0.weight", "inn.module_list.3.s2.0.bias", "inn.module_list.3.s2.2.weight", "inn.module_list.3.s2.2.bias", "inn.module_list.5.s1.0.weight", "inn.module_list.5.s1.0.bias", "inn.module_list.5.s1.2.weight", "inn.module_list.5.s1.2.bias", "inn.module_list.5.s2.0.weight", "inn.module_list.5.s2.0.bias", "inn.module_list.5.s2.2.weight", "inn.module_list.5.s2.2.bias", "inn.module_list.7.s1.0.weight", "inn.module_list.7.s1.0.bias", "inn.module_list.7.s1.2.weight", "inn.module_list.7.s1.2.bias", "inn.module_list.7.s2.0.weight", "inn.module_list.7.s2.0.bias", "inn.module_list.7.s2.2.weight", "inn.module_list.7.s2.2.bias", "inn.module_list.9.s1.0.weight", "inn.module_list.9.s1.0.bias", "inn.module_list.9.s1.2.weight", "inn.module_list.9.s1.2.bias", "inn.module_list.9.s2.0.weight", "inn.module_list.9.s2.0.bias", "inn.module_list.9.s2.2.weight", "inn.module_list.9.s2.2.bias", "inn.module_list.11.s1.0.weight", "inn.module_list.11.s1.0.bias", "inn.module_list.11.s1.2.weight", "inn.module_list.11.s1.2.bias", "inn.module_list.11.s2.0.weight", "inn.module_list.11.s2.0.bias", "inn.module_list.11.s2.2.weight", "inn.module_list.11.s2.2.bias", "inn.module_list.13.s1.0.weight", "inn.module_list.13.s1.0.bias", "inn.module_list.13.s1.2.weight", "inn.module_list.13.s1.2.bias", "inn.module_list.13.s2.0.weight", "inn.module_list.13.s2.0.bias", "inn.module_list.13.s2.2.weight", "inn.module_list.13.s2.2.bias", "inn.module_list.15.s1.0.weight", "inn.module_list.15.s1.0.bias", "inn.module_list.15.s1.2.weight", "inn.module_list.15.s1.2.bias", "inn.module_list.15.s2.0.weight", "inn.module_list.15.s2.0.bias", "inn.module_list.15.s2.2.weight", "inn.module_list.15.s2.2.bias".
Loading using self.load_state_dict(network_state_dict, strict=False)
in ./models/model.py
line 63 seems to fix the problem, but then the evaluation metrics are off by a lot.
Average:
3D Protocol-I z_0: 1761697.93
3D Protocol-I best hypo: 73987.92
3D Protocol-I median hypo: 2354026.03
3D Protocol-I mean hypo: 4192725.50
3D Protocol-I worst hypo: 49519483.01
3D Protocol-II z_0: 408.56
3D Protocol-II best hypo: 360.55
3D Protocol-II median hypo: 408.01
3D Protocol-II mean hypo: 406.66
3D Protocol-II worst hypo: 429.66
std dev per joint and dim in mm:
joint 0: std_x=0.00, std_y=0.00, std_z=0.00
joint 1: std_x=2713363.25, std_y=4497608.00, std_z=1229723.62
joint 2: std_x=5092118.50, std_y=5026269.00, std_z=3333644.75
joint 3: std_x=3927144.75, std_y=4752659.00, std_z=4638813.50
joint 4: std_x=2713363.25, std_y=4497608.00, std_z=1229723.62
joint 5: std_x=4988073.00, std_y=4202771.00, std_z=1055546.38
joint 6: std_x=4485964.50, std_y=5458925.00, std_z=1890290.62
joint 7: std_x=4712188.50, std_y=5419219.50, std_z=1223268.88
joint 8: std_x=3895103.75, std_y=6552087.00, std_z=1079990.88
joint 9: std_x=4310205.00, std_y=4260656.50, std_z=7185773.00
joint 10: std_x=7090483.50, std_y=5303002.50, std_z=1693970.62
joint 11: std_x=4958182.00, std_y=4558726.00, std_z=1272373.12
joint 12: std_x=4196097.00, std_y=4670686.50, std_z=1536391.38
joint 13: std_x=3967276.75, std_y=4828261.50, std_z=1302280.12
joint 14: std_x=8149503.50, std_y=4338247.50, std_z=1942508.12
joint 15: std_x=11636298.00, std_y=6795918.00, std_z=1937581.38
joint 16: std_x=4513685.00, std_y=917258.38, std_z=1015419.19
Would you maybe know what the issue might be?