An SE(3)-invariant autoencoder for generating the periodic structure of materials

Related tags

Deep Learning cdvae
Overview

Crystal Diffusion Variational AutoEncoder

This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic structure of materials.

It has several main functionalities:

  • Generate novel, stable materials by learning from a dataset containing existing material structures.
  • Generate materials by optimizing a specific property in the latent space, i.e. inverse design.

[Paper] [Datasets]

Table of Contents

Installation

The easiest way to install prerequisites is via conda.

Pre-install step

Install conda-merge:

pip install conda-merge

Check that you can invoke conda-merge by running conda-merge -h.

GPU machines

Run the following command to install the environment:

conda-merge env.common.yml env.gpu.yml > env.yml
conda env create -f env.yml

Activate the conda environment with conda activate cdvae.

Install this package with pip install -e ..

CPU-only machines

conda-merge env.common.yml env.cpu.yml > env.yml
conda env create -f env.yml
conda activate cdvae
pip install -e .

Setting up environment variables

Make a copy of the .env.template file and rename it to .env. Modify the following environment variables in .env.

  • PROJECT_ROOT: path to the folder that contains this repo
  • HYDRA_JOBS: path to a folder to store hydra outputs
  • WABDB: path to a folder to store wabdb outputs

Datasets

All datasets are directly available on data/ with train/valication/test splits. You don't need to download them again. If you use these datasets, please consider to cite the original papers from which we curate these datasets.

Find more about these datasets by going to our Datasets page.

Training CDVAE

Training without a property predictor

To train a CDVAE, run the following command:

python cdvae/run.py data=perov expname=perov

To use other datasets, use data=carbon and data=mp_20 instead. CDVAE uses hydra to configure hyperparameters, and users can modify them with the command line or configure files in conf/ folder.

After training, model checkpoints can be found in $HYDRA_JOBS/singlerun/YYYY-MM-DD/expname.

Training with a property predictor

Users can also additionally train an MLP property predictor on the latent space, which is needed for the property optimization task:

python cdvae/run.py data=perov expname=perov model.predict_property=True

The name of the predicted propery is defined in data.prop, as in conf/data/perov.yaml for Perov-5.

Generating materials

To generate materials, run the following command:

python scripts/evaluate.py --model_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. Users can choose one or several of the 3 tasks:

  • recon: reconstruction, reconstructs all materials in the test data. Outputs can be found in eval_recon.ptl
  • gen: generate new material structures by sampling from the latent space. Outputs can be found in eval_gen.pt.
  • opt: generate new material strucutre by minimizing the trained property in the latent space (requires model.predict_property=True). Outputs can be found in eval_opt.pt.

eval_recon.pt, eval_gen.pt, eval_opt.pt are pytorch pickles files containing multiple tensors that describes the structures of M materials batched together. Each material can have different number of atoms, and we assume there are in total N atoms. num_evals denote the number of Langevin dynamics we perform for each material.

  • frac_coords: fractional coordinates of each atom, shape (num_evals, N, 3)
  • atom_types: atomic number of each atom, shape (num_evals, N)
  • lengths: the lengths of the lattice, shape (num_evals, M, 3)
  • angles: the angles of the lattice, shape (num_evals, M, 3)
  • num_atoms: the number of atoms in each material, shape (num_evals, M)

Evaluating model

To compute evaluation metrics, run the following command:

python scripts/compute_metrics.py --root_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. All evaluation metrics will be saved in eval_metrics.json.

Authors and acknowledgements

The software is primary written by Tian Xie, with signficant contributions from Xiang Fu.

The GNN codebase and many utility functions are adapted from the ocp-models by the Open Catalyst Project. Especially, the GNN implementations of DimeNet++ and GemNet are used.

The main structure of the codebase is built from NN Template.

For the datasets, Perov-5 is curated from Perovksite water-splitting, Carbon-24 is curated from AIRSS data for carbon at 10GPa, MP-20 is curated from Materials Project.

Citation

Please consider citing the following paper if you find our code & data useful.

@article{xie2021crystal,
  title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
  author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
  journal={arXiv preprint arXiv:2110.06197},
  year={2021}
}

Contact

Please leave an issue or reach out to Tian Xie (txie AT csail DOT mit DOT edu) if you have any questions.

Comments
  • Environment issues and some name inconsistency

    Environment issues and some name inconsistency

    Dear authors,

    Hi, when I install the environment by running 'conda env create -f env.yml', I got stuck in the 'solving environment' step of conda.

    Could you check this step? I think something might be wrong here ~.

    Also, there are some errors when I run the training code. Some places you name it cdvae but you use crystalvae to refer it in the pipeline.

    opened by YKQ98 7
  • What is the shape of the graph network input layer that represents a single crystal structure?

    What is the shape of the graph network input layer that represents a single crystal structure?

    I believe CGCNN is a 3D matrix that looks more like a cube than a high-aspect ratio box, though I don't remember the specific default shape off the top of my head. Assuming this is a valid question to be asking, what is the input shape that represents a single crystal structure in CDVAE? E.g. $100\times100\times50$.

    opened by sgbaird 4
  • Question about the reconstruction task

    Question about the reconstruction task

    Hi authors,

    I have a question about the reconstruction experiments in CDVAE. I have tried running the training on mp_20 dataset, and run these commands to do the reconstruction and evaluation following instructions in README.md:

    python scripts/evaluate.py --model_path /home/lyz/cdvae/hydra/singlerun/2022-04-04/mp_20/ --tasks recon
    python scripts/compute_metrics.py --root_path /home/lyz/cdvae/hydra/singlerun/2022-04-04/mp_20/ --tasks recon
    

    However, the reconstruction match rate is very low:

    {"match_rate": 0.16604023877957108, "rms_dist": 0.05085572933343641}
    

    I noticed that there is an option to only reconstruct coordinates and lattices while keeping ground truth atom types and numbers, and tried this option as:

    python scripts/evaluate.py --model_path /home/lyz/cdvae/hydra/singlerun/2022-04-04/mp_20/ --tasks recon --force_num_atoms --force_atom_types
    

    This time the reconstruction match rate is much higher:

    {"match_rate": 0.3720981649347778, "rms_dist": 0.14127310664427778}
    

    Hence I think whether two materials match is related to their atom types. I am wondering for the reconstruction performance result reported in Table 1 of the paper, do you reconstruct all things about materials in the test set, or only reconstruct coordinates and lattices and keeping ground truth atom types and numbers?

    Thank you for your possible help!

    Best

    opened by lyzustc 4
  • How to train prop_models on a custom dataset

    How to train prop_models on a custom dataset

    I really appreciate your work and I want to train and evaluate this model on a custom dataset. However, after completing the three tasks, I failed to evaluate the generation task and optimisation task. It seems that I need to train another property predictor (like those models in cdvae/prop_models) on the custom dataset independently, but I failed find the code to train it. Would you mind provide some instructions to train this property predictor? Thank you very much!

    opened by Breaddsmall 2
  • What code was used to visualize the structures?

    What code was used to visualize the structures?

    It looks a lot like pymatviz (see struct_vis), but I didn't think that pymatviz dealt with transparency, so I'm assuming it's something else.

    https://github.com/txie-93/cdvae/tree/main/data/perov_5#visualization-of-structures

    opened by sgbaird 2
  • Decoder loss

    Decoder loss

    Hi,

    Very interesting work! A question, though: in the paper equation 2 (the decoder loss) shouldn’t the score, s, be divided by sigma (i.e., so that it becomes the score conditioned on sigma), and d_min be divided by sigma^2 (instead of just sigma)? This is what I get from comparing the work by Song and Ermon, and it also seems to be how you have implemented it here in the codebase. Or maybe I have misunderstood something?

    opened by filipekstrm 2
  • Reconstruction evaluation error

    Reconstruction evaluation error

    Hello @txie-93!

    Thanks for the great code/repo. It is refreshing to have such high quality research code.

    I have trained a model with property prediction, but running the evaluation for reconstruction throws this error:

    (cdvae) markn@MacBook-Pro cdvae % PYTHONPATH=. python scripts/evaluate.py --model_path /Users/markn/code/cdvae/hydra/singlerun/2022-09-15/mini-property-pred --tasks gen opt recon --batch_size 10 --num_batches_to_samples 2
    /Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/hydra/experimental/compose.py:16: UserWarning: hydra.experimental.compose() is no longer experimental. Use hydra.compose()
      warnings.warn(
     72%|██████████████████████████████████████████████████████▋                     | 285/396 [00:17<00:05, 20.42it/s]/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/pymatgen/io/cif.py:1193: UserWarning: Issues encountered while parsing CIF: Some fractional co-ordinates rounded to ideal values to avoid issues with finite precision.
      warnings.warn(
    100%|████████████████████████████████████████████████████████████████████████████| 396/396 [00:24<00:00, 16.12it/s]
    /Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/deprecation.py:13: UserWarning: 'data.DataLoader' is deprecated, use 'loader.DataLoader' instead
      warnings.warn(out)
    Evaluate model on the reconstruction task.
    batch 0 in 13
    /Users/markn/code/cdvae/cdvae/common/data_utils.py:622: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
      X = torch.tensor(X, dtype=torch.float)
    100%|██████████████████████████████████████████████████████████████████████████████| 50/50 [10:50<00:00, 13.01s/it]
    Batch(edge_index=[2, 1114], y=[32, 1], frac_coords=[298, 3], atom_types=[298], lengths=[32, 3], angles=[32, 3], to_jimages=[1114, 3], num_atoms=[32], num_bonds=[32], num_nodes=298, batch=[298], ptr=[33])
    Traceback (most recent call last):
      File "scripts/evaluate.py", line 281, in <module>
        main(args)
      File "scripts/evaluate.py", line 195, in main
        all_frac_coords_stack, all_atom_types_stack, input_data_batch) = reconstructon(
      File "scripts/evaluate.py", line 70, in reconstructon
        input_data_list = input_data_list + batch.to_data_list()
      File "/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/data/batch.py", line 157, in to_data_list
        return [self.get(i) for i in range(self.num_graphs)]
      File "/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/data/batch.py", line 157, in <listcomp>
        return [self.get(i) for i in range(self.num_graphs)]
      File "/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/data/batch.py", line 90, in get
        data = separate(
      File "/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/data/separate.py", line 40, in separate
        data_store[attr] = _separate(attr, batch_store[attr], idx, slices,
      File "/Users/markn/anaconda3/envs/cdvae/lib/python3.8/site-packages/torch_geometric/data/separate.py", line 87, in _separate
        if decrement and (incs.dim() > 1 or int(incs[idx]) != 0):
    AttributeError: 'NoneType' object has no attribute 'dim'
    

    Perhaps this is related to the pytorch geometric version? The version that was installed is torch-geometric==2.0.1

    Otherwise, do you have any pointers/suggestions?

    thanks,

    Mark

    opened by DeNeutoy 1
  • Faster conda dependency installation

    Faster conda dependency installation

    Installing the conda environment can take very long (>1h).

    In this PR I've created env_sub.yml, where a couple of dependencies from env.yml are commented out (I did not completely delete them to make transparent what exactly was left out). The ones that are commented out are then installed directly via conda install. For me this takes only a couple of minutes this way.

    Let me know what you think :)

    opened by danielzuegner 0
  • Error when doing training: Segmentation fault

    Error when doing training: Segmentation fault

    Hi professor, I followed the installation in README and use env.yaml to create the conda environment on GPU clusters. When i try command like python cdvae/run.py data=carbon an error occurs: [2022-12-15 21:18:19,363][hydra.utils][INFO] - Instantiating <cdvae.pl_data.datamodule.CrystDataModule> Segmentation fault (core dumped) I have tried other data like mp_20 and tried to add CXX=g++ before command but still failed. Could you please help me about that? Thanks !

    opened by JiamingHu121 0
  • How can I solve the cuda capability problem?

    How can I solve the cuda capability problem?

    When I command 'python cdvae/run.py data=perov expname=perov',I meet the problem that CUDA capabilities probelm.The concrete hint is as follow:

    packages/torch/cuda/__init__.py:104: UserWarning: 
    NVIDIA GeForce RTX 4090 with CUDA capability sm_89 is not compatible with the current PyTorch installation.
    The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37.
    
    opened by feiji110 2
  • Consider using ElMD for the composition-based distance

    Consider using ElMD for the composition-based distance

    For a "more chemically intuitive" distance metric. Original implementation: ElMD and ElM2D. Lightning-fast version of ElM2D at https://github.com/sparks-baird/chem_wasserstein. $10k \times 10k$ pairwise distances on order of ~10 seconds on CPU.

    https://github.com/txie-93/cdvae/blob/f857f598d6f6cca5dc1ea0582d228f12dcc2c2ea/scripts/compute_metrics.py#L17 https://github.com/txie-93/cdvae/blob/f857f598d6f6cca5dc1ea0582d228f12dcc2c2ea/scripts/compute_metrics.py#L92

    opened by sgbaird 1
  • Unable to create new environment from env.cpu.yml file

    Unable to create new environment from env.cpu.yml file

    This is what outputs in Anaconda Prompt:

    `(base) C:\Users\colto\Desktop>conda env create -f env.cpu.yml

    Collecting package metadata (repodata.json): done

    Solving environment: /

    Found conflicts! Looking for incompatible packages.

    UnsatisfiableError: The following specifications were found to be incompatible with each other:

    Output in format: Requested package -> Available versions

    Package requests conflicts for: pyg=2.0.1 -> requests python=3.8 -> pip -> requests matminer=0.7.3 -> citrination-client[version='>=4.0.1'] -> requests[version='>=2.18.4'] jupyterlab -> jupyterlab_server[version='>=2.10,<3'] -> requests matminer=0.7.3 -> requests[version='>=2.20.0'] pytorch-lightning=1.3.8 -> tensorboard[version='>=2.2.0,!=2.5.0'] -> requests[version='>=2.21.0|>=2.21.0,<3'] pymatgen=2020.12.31 -> requests pip -> requests

    Package zlib conflicts for: matplotlib -> zlib[version='>=1.2.11,<1.3.0a0'] jupyterlab -> python[version='>=3.7'] -> zlib[version='>=1.2.11,<1.3.0a0'] matminer=0.7.3 -> python[version='>=3.5'] -> zlib[version='>=1.2.11,<1.3.0a0'] pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> zlib[version='1.2.|1.2.11.|>=1.2.11,<1.3.0a0|>=1.2.12,<1.3.0a0'] python=3.8 -> pypy3.8=7.3.9 -> zlib[version='>=1.2.11,<1.3.0a0'] pytorch-lightning=1.3.8 -> python[version='>=3.6'] -> zlib[version='>=1.2.11,<1.3.0a0'] pylint -> python[version='>=3.7.2'] -> zlib[version='>=1.2.11,<1.3.0a0'] seaborn -> matplotlib-base[version='>=2.1.2'] -> zlib[version='>=1.2.11,<1.3.0a0'] pip -> python[version='>=3.7'] -> zlib[version='>=1.2.11,<1.3.0a0'] matplotlib -> freetype=2.6 -> zlib[version='1.2.*|1.2.11|1.2.8'] autopep8 -> python[version='>=3.6'] -> zlib[version='>=1.2.11,<1.3.0a0'] ase=3.22 -> matplotlib-base -> zlib[version='>=1.2.11,<1.3.0a0'] ipywidgets -> python[version='>=3.3'] -> zlib[version='>=1.2.11,<1.3.0a0'] tqdm -> python[version='>=2.7'] -> zlib[version='>=1.2.11,<1.3.0a0'] nglview -> python[version='>=3.6'] -> zlib[version='>=1.2.11,<1.3.0a0']

    Package pypy3.7 conflicts for: tqdm -> python[version='>=2.7'] -> pypy3.7[version='7.3.5.|7.3.7.'] seaborn -> statsmodels[version='>=0.8.0'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] matplotlib -> python[version='>=3.7,<3.8.0a0'] -> pypy3.7[version='7.3.|7.3.5.|7.3.7.*'] pytorch-lightning=1.3.8 -> future -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] matminer=0.7.3 -> future[version='>=0.16.0'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] pyg=2.0.1 -> numpy -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] jupyterlab -> ipython -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] ase=3.22 -> matplotlib-base -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] nglview -> numpy -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] autopep8 -> python[version='>=3.6'] -> pypy3.7[version='7.3.5.|7.3.7.'] pytorch=1.8.1 -> numpy[version='>=1.19'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] matplotlib -> pypy3.7[version='>=7.3.5|>=7.3.7'] pylint -> python[version='>=3.7.2'] -> pypy3.7[version='7.3.5.|7.3.7.'] ipywidgets -> ipython[version='>=4.0.0'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.5|>=7.3.7'] pip -> python[version='>=3.7'] -> pypy3.7[version='7.3.5.|7.3.7.|>=7.3.7|>=7.3.5']

    Package setuptools conflicts for: pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> setuptools[version='<60.0.0'] autopep8 -> pycodestyle[version='>=2.3'] -> setuptools python=3.8 -> pip -> setuptools jupyterlab -> ipython -> setuptools[version='>=18.5|>=46.4.0|>=60.2.0'] pylint -> astroid[version='>=2.11.6,<2.12.0'] -> setuptools[version='>=20.0'] ase=3.22 -> matplotlib-base -> setuptools seaborn -> matplotlib-base[version='>=2.1.2'] -> setuptools[version='<60.0.0'] pytorch-lightning=1.3.8 -> tensorboard[version='>=2.2.0,!=2.5.0'] -> setuptools[version='>=41.0.0|>=41.4'] matplotlib -> setuptools matminer=0.7.3 -> citrination-client[version='>=4.0.1'] -> setuptools[version='<60.0.0'] nglview -> ipykernel -> setuptools[version='>=60'] ipywidgets -> ipykernel[version='>=4.5.1'] -> setuptools[version='>=18.5|>=60'] pip -> setuptools pyg=2.0.1 -> jinja2 -> setuptools[version='<60.0.0']

    Package vs2010_runtime conflicts for: ipywidgets -> python[version='>=3.3'] -> vs2010_runtime tqdm -> python[version='>=2.7'] -> vs2010_runtime pylint -> python=3.4 -> vs2010_runtime seaborn -> python -> vs2010_runtime jupyterlab -> python=3.4 -> vs2010_runtime autopep8 -> python -> vs2010_runtime matplotlib -> python=3.4 -> vs2010_runtime nglview -> python[version='>=3'] -> vs2010_runtime pip -> python[version='>=3'] -> vs2010_runtime

    Package python conflicts for: ipywidgets -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.3|>=3.6,<3.7.0a0|>=3.5,<3.6.0a0|3.4.|>=3.7,<3.8.0a0'] ase=3.22 -> flask -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.6,<3.7.0a0|>=3.6|>=3.7|>=3.5,<3.6.0a0|3.4.|>=3.7,<3.8.0a0|>=3.10,<3.11.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0'] jupyterlab -> ipython -> python[version='>=2.7|>=3.10,<3.11.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0|>=3'] nglview -> python[version='2.7.|3.5.|3.6.*|>=3|>=3.6'] ipywidgets -> ipykernel[version='>=4.5.1'] -> python[version='>=3.10,<3.11.0a0|>=3.7|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0|>=3.6|>=3.5'] matminer=0.7.3 -> python[version='>=3.5'] pip -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0|>=3|>=3.6|>=3.7|>=3.6,<3.7.0a0|>=3.5,<3.6.0a0|3.4.|>=3.9,<3.10.0a0|>=3.10,<3.11.0a0'] ase=3.22 -> python[version='>=3.5'] pip -> wheel -> python[version='!=3.0,!=3.1,!=3.2,!=3.3,!=3.4|2.7.*|>=3.6|2.7|>=3.6|>=2.7|>=3.6,<4.0'] tqdm -> colorama -> python[version='>=3.6'] seaborn -> python[version='2.7.|3.5.|3.6.|>=3.6|3.4.|>=3.7,<3.8.0a0|>=2.7,<2.8.0a0|>=3.5,<3.6.0a0|>=3.6,<3.7.0a0'] pytorch-lightning=1.3.8 -> fsspec[version='>=2021.4.0'] -> python[version='2.7.|3.4.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.10,<3.11.0a0|>=3.8,<3.9.0a0|>=3.9,<3.10.0a0|>=3.7,<3.8.0a0|>=3.7|>=3.6,<3.7.0a0|>=3.5,<3.6.0a0|>=2.7|>=3.2|>=3.2,<3.10|>=3.5'] pytorch=1.8.1 -> python[version='>=3.6,<3.7.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0|>=3.7,<3.8.0a0'] matminer=0.7.3 -> aflow[version='>=0.0.9'] -> python[version='2.7.|3.5.|3.6.|>=3.9,<3.10.0a0|>=3.10,<3.11.0a0|>=3.8,<3.9.0a0|>=3.7,<3.8.0a0|>=3.6,<3.7.0a0|>=2.7,<2.8.0a0|>=3.5,<3.6.0a0|3.4.|>=3|>=3.7|>=3.6|>=3.7.1,<3.8.0a0|>=3.8|>=3.6,<4.0|>=2.7'] seaborn -> statsmodels[version='>=0.8.0'] -> python[version='>=3.10,<3.11.0a0|>=3.8,<3.9.0a0|>=3.9,<3.10.0a0|>=3.7.1,<3.8.0a0'] jupyterlab -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.5,<3.6.0a0|>=3.5|>=3.6|>=3.7|>=3.7,<3.8.0a0|>=3.6,<3.7.0a0|3.4.'] pylint -> colorama -> python[version='3.7.|>=2.7|>=3.5|>=3.6|>=3.6,<4.0|>=3.6.1,<4.0|>=3.7|3.8.|3.9.*'] autopep8 -> pycodestyle[version='>=2.8'] -> python[version='2.7.*|>=3.5|>=2.7|>=3.8,<3.9.0a0|>=3.10,<3.11.0a0|>=3.9,<3.10.0a0'] pylint -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.5,<3.6.0a0|>=3.6,<3.7.0a0|>=3.6,<4|>=3.6.2,<4|>=3.6.2|>=3.7.2|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0|>=3.9,<3.10.0a0|3.4.|>=3.10,<3.11.0a0'] tqdm -> python[version='2.7.|3.5.|3.6.|>=2.7|>=2.7,<2.8.0a0|>=3.8,<3.9.0a0|>=3.7,<3.8.0a0|>=3.6,<3.7.0a0|3.4.|>=3.9,<3.10.0a0|>=3.10,<3.11.0a0|>=3.5,<3.6.0a0'] matplotlib -> python[version='3.4.|3.5.|>=2.7,<2.8.0a0|>=3.10,<3.11.0a0|>=3.7,<3.8.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0|>=3.6,<3.7.0a0|>=3.5,<3.6.0a0'] pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> python[version='2.7.|3.5.|3.6.|>=2.7,<2.8.0a0|>=3.10,<3.11.0a0|>=3.5,<3.6.0a0|3.4.|>=3.5|>=3.6|>=3.8|>=3.7|>=3.7.1,<3.8.0a0|>=3|3.7.|>=3.6,<4.0|2.7.|>=3.5|>=2.7|>=3.6,<3.7|3.9.|3.8.'] nglview -> ipywidgets[version='>=7'] -> python[version='3.4.*|>=2.7,<2.8.0a0|>=3.3|>=3.6,<3.7.0a0|>=3.5,<3.6.0a0|>=3.7,<3.8.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0|>=3.10,<3.11.0a0|>=3.7'] autopep8 -> python[version='2.7.|3.5.|3.6.|>=3.6|3.4.|>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=2.7,<2.8.0a0|>=3.5,<3.6.0a0'] python=3.8 matplotlib -> pyqt -> python[version='2.7.|3.6.|3.10.|3.7.|3.9.|3.8.|>=3.6|>=3|<3'] pytorch-lightning=1.3.8 -> python[version='>=3.6'] pytorch=1.8.1 -> ninja -> python[version='>=2.7,<2.8.0a0|>=3.10,<3.11.0a0|>=3.5,<3.6.0a0|>=3.7|>=3.6|>=3.5|>=3.6,<3.7'] pymatgen=2020.12.31 -> python[version='>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.9,<3.10.0a0|>=3.8,<3.9.0a0']

    Package icc_rt conflicts for: pytorch-lightning=1.3.8 -> numpy[version='>=1.17.2'] -> icc_rt[version='>=2019.0.0'] seaborn -> numpy[version='>=1.13.3'] -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4'] matminer=0.7.3 -> numpy[version='>=1.18.3'] -> icc_rt[version='>=2019.0.0'] pyg=2.0.1 -> numpy -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4'] ase=3.22 -> numpy -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4'] matplotlib -> numpy=1.11 -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4'] pymatgen=2020.12.31 -> scipy[version='>=1.4.1'] -> icc_rt[version='>=2019.0.0'] nglview -> numpy -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4']

    Package charset-normalizer conflicts for: pymatgen=2020.12.31 -> requests -> charset-normalizer[version='>=2,<3|>=2.0.0,<2.1|>=2.0.0,<2.0.1|>=2.0.0,<2.1.0'] pip -> requests -> charset-normalizer[version='>=2,<3|>=2.0.0,<2.1|>=2.0.0,<2.0.1|>=2.0.0,<2.1.0'] matminer=0.7.3 -> requests[version='>=2.20.0'] -> charset-normalizer[version='>=2,<3|>=2.0.0,<2.1|>=2.0.0,<2.0.1|>=2.0.0,<2.1.0'] pyg=2.0.1 -> requests -> charset-normalizer[version='>=2,<3|>=2.0.0,<2.1|>=2.0.0,<2.0.1|>=2.0.0,<2.1.0']

    Package pillow conflicts for: seaborn -> matplotlib-base[version='>=2.1.2'] -> pillow[version='>=6.2.0'] matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> pillow[version='>=6.2.0'] ase=3.22 -> matplotlib-base -> pillow[version='>=6.2.0'] pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> pillow[version='>=6.2.0']

    Package pygments conflicts for: jupyterlab -> ipython -> pygments[version='>=2.4.0'] ipywidgets -> ipython[version='>=4.0.0'] -> pygments[version='>=2.4.0']

    Package colorama conflicts for: pip -> colorama jupyterlab -> ipython -> colorama matminer=0.7.3 -> pip -> colorama pymatgen=2020.12.31 -> pip -> colorama tqdm -> colorama pytorch-lightning=1.3.8 -> tqdm[version='>=4.41.0'] -> colorama pylint -> colorama pyg=2.0.1 -> tqdm -> colorama python=3.8 -> pip -> colorama ipywidgets -> ipython[version='>=4.0.0'] -> colorama

    Package tqdm conflicts for: matminer=0.7.3 -> tqdm[version='>=4.23.1'] matminer=0.7.3 -> mdf_forge[version='>=0.6.1'] -> tqdm[version='>=4.19.4'] pymatgen=2020.12.31 -> tqdm pytorch-lightning=1.3.8 -> tqdm[version='>=4.41.0'] tqdm

    Package nbformat conflicts for: matminer=0.7.3 -> plotly[version='>=3.2.1'] -> nbformat[version='>=4.2'] jupyterlab -> jupyter_server[version='>=1.16,<2'] -> nbformat[version='>=5.2|>=5.2.0'] ipywidgets -> nbformat[version='>=4.2.0'] ipywidgets -> notebook -> nbformat nglview -> ipywidgets[version='>=7'] -> nbformat[version='>=4.2.0']

    Package pytz conflicts for: matplotlib -> pytz seaborn -> matplotlib-base[version='>=2.1.2'] -> pytz[version='>=2017.2|>=2020.1|>=2017.3'] matminer=0.7.3 -> pandas[version='>=0.23.4'] -> pytz[version='>=2017.2|>=2020.1|>=2017.3'] pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> pytz[version='>=2017.2|>=2020.1|>=2017.3'] pyg=2.0.1 -> pandas -> pytz[version='>=2017.2|>=2020.1|>=2017.3'] ase=3.22 -> matplotlib-base -> pytz

    Package progress conflicts for: pip -> progress matminer=0.7.3 -> pip -> progress python=3.8 -> pip -> progress pymatgen=2020.12.31 -> pip -> progress

    Package pyqt conflicts for: seaborn -> matplotlib[version='>=2.1.2'] -> pyqt[version='4.11.|5.|5.6.|5.9.|>=5.12.3,<5.13.0a0|>=5.9.2,<5.10.0a0|>=5.6.0,<5.7.0a0|>=5.6,<6.0a0'] matplotlib -> pyqt[version='4.11.|>=5.12.3,<5.13.0a0|>=5.9.2,<5.10.0a0|>=5.6.0,<5.7.0a0|5.9.|5.6.|>=5.6,<6.0a0|5.']

    Package m2w64-gcc-libs conflicts for: pytorch=1.8.1 -> blas=[build=mkl] -> m2w64-gcc-libs ase=3.22 -> scipy -> m2w64-gcc-libs pymatgen=2020.12.31 -> scipy[version='>=1.4.1'] -> m2w64-gcc-libs seaborn -> scipy[version='>=1.0.1'] -> m2w64-gcc-libs

    Package decorator conflicts for: pyg=2.0.1 -> networkx[version='>=2.4'] -> decorator[version='>=4.3.0|>=4.3.0,<5'] pymatgen=2020.12.31 -> networkx[version='>=2.2'] -> decorator[version='>=3.4.0|>=4.3.0|>=4.3.0,<5'] jupyterlab -> ipython -> decorator matminer=0.7.3 -> plotly[version='>=3.2.1'] -> decorator[version='>=4.0.6'] ipywidgets -> ipython[version='>=4.0.0'] -> decorator

    Package networkx conflicts for: pymatgen=2020.12.31 -> networkx[version='>=2.2'] pyg=2.0.1 -> networkx[version='>=2.4'] pyg=2.0.1 -> python-louvain -> networkx matminer=0.7.3 -> pymatgen[version='>=2019.10.2'] -> networkx[version='>=2.2']

    Package six conflicts for: matminer=0.7.3 -> six[version='>=1.16.0'] matplotlib -> cycler -> six[version='>=1.5'] pylint -> six pylint -> astroid==2.5.6 -> six[version='>=1.12,<2'] pip -> html5lib -> six[version='>=1.9'] matminer=0.7.3 -> aflow[version='>=0.0.9'] -> six[version='1.15.0|>=1.15.0'] seaborn -> patsy -> six pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> six[version='1.15.0|>=1.4.0|>=1.15.0'] jupyterlab -> packaging -> six ipywidgets -> traitlets[version='>=4.3.1,<6.0.0'] -> six pytorch-lightning=1.3.8 -> packaging -> six[version='>=1.10.0|>=1.12']

    Package packaging conflicts for: jupyterlab -> packaging pytorch-lightning=1.3.8 -> packaging pip -> packaging matminer=0.7.3 -> pint[version='>=0.8.1'] -> packaging nglview -> ipykernel -> packaging seaborn -> statsmodels[version='>=0.8.0'] -> packaging[version='>=20.0|>=21.3'] ipywidgets -> ipykernel[version='>=4.5.1'] -> packaging ase=3.22 -> matplotlib-base -> packaging[version='>=20.0'] python=3.8 -> pip -> packaging pip -> wheel -> packaging[version='>=20.2'] pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> packaging[version='>=20.0'] matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> packaging[version='>=20.0']

    Package freetype conflicts for: matplotlib -> freetype[version='2.6.*|>=2.9.1,<3.0a0|>=2.8,<2.9.0a0'] matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> freetype[version='>=2.10.2,<3.0a0|>=2.10.4,<3.0a0|>=2.3']

    Package futures conflicts for: pylint -> isort[version='>=4.2.5,<6'] -> futures pymatgen=2020.12.31 -> apscheduler[version='>=2.1.0'] -> futures jupyterlab -> futures matplotlib -> tornado -> futures

    Package toml conflicts for: autopep8 -> toml pylint -> toml[version='>=0.7.1|>=0.9.2']

    Package typing_extensions conflicts for: pylint -> typing_extensions[version='>=3.10|>=3.10.0'] pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] -> typing_extensions matplotlib -> kiwisolver -> typing_extensions pylint -> typing-extensions[version='>=3.10.0'] -> typing_extensions[version='3.10.0.0|3.10.0.0|3.10.0.1|3.10.0.2|4.0.0|4.0.1|4.1.1|4.2.0|4.1.1|3.10.0.2',build='pyh06a4308_0|pyh06a4308_0|pyh06a4308_0|pyha770c72_0|pyha770c72_0|pyha770c72_0|pyha770c72_1|pyha770c72_0|pyha770c72_0|pyha770c72_0|pyha770c72_0'] pyg=2.0.1 -> pytorch=1.9 -> typing_extensions pytorch=1.8.1 -> typing_extensions

    Package jinja2 conflicts for: pyg=2.0.1 -> jinja2 ase=3.22 -> flask -> jinja2[version='>=2.10|>=2.10.1|>=2.10.1,<3.0|>=3.0|>=2.4'] ipywidgets -> notebook -> jinja2 matminer=0.7.3 -> aflow[version='>=0.0.9'] -> jinja2 jupyterlab -> jupyter_server[version='>=1.16,<2'] -> jinja2[version='>2.10*|>=3.0.3'] nglview -> notebook -> jinja2 jupyterlab -> jinja2[version='>=2.1|>=2.10']

    Package backports_abc conflicts for: jupyterlab -> tornado[version='!=6.0.0,!=6.0.1,!=6.0.2'] -> backports_abc[version='>=0.4'] matplotlib -> tornado -> backports_abc[version='>=0.4']

    Package importlib-metadata conflicts for: ipywidgets -> ipykernel[version='>=4.5.1'] -> importlib-metadata[version='<4|<5'] nglview -> ipykernel -> importlib-metadata[version='<4|<5'] ase=3.22 -> flask -> importlib-metadata[version='>=3.6.0']

    Package ca-certificates conflicts for: nglview -> python -> ca-certificates autopep8 -> python -> ca-certificates jupyterlab -> python[version='>=2.7,<2.8.0a0'] -> ca-certificates tqdm -> python[version='>=2.7'] -> ca-certificates python=3.8 -> openssl[version='>=1.1.1n,<1.1.2a'] -> ca-certificates pip -> python -> ca-certificates seaborn -> python -> ca-certificates pylint -> python[version='>=2.7,<2.8.0a0'] -> ca-certificates ipywidgets -> python -> ca-certificates matplotlib -> python[version='>=2.7,<2.8.0a0'] -> ca-certificates

    Package intel-openmp conflicts for: pyg=2.0.1 -> pytorch=1.9 -> intel-openmp pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] -> intel-openmp pytorch=1.8.1 -> mkl[version='>=2018'] -> intel-openmp[version='2021.|2022.'] pytorch=1.8.1 -> intel-openmp pymatgen=2020.12.31 -> netcdf4 -> intel-openmp=2020.0

    Package enum34 conflicts for: pylint -> astroid[version='>=1.6,<2.0'] -> enum34 ipywidgets -> traitlets[version='>=4.3.1,<6.0.0'] -> enum34

    Package ase conflicts for: ase=3.22 matminer=0.7.3 -> ase[version='>=3.14.1'] pymatgen=2020.12.31 -> ase[version='>=3.3'] matminer=0.7.3 -> aflow[version='>=0.0.9'] -> ase[version='>=3.3']

    Package pyyaml conflicts for: matminer=0.7.3 -> citrination-client[version='>=4.0.1'] -> pyyaml pyg=2.0.1 -> pyyaml pytorch-lightning=1.3.8 -> pyyaml[version='>=5.1,<=5.4.1'] pymatgen=2020.12.31 -> pybtex -> pyyaml[version='>=3.01']

    Package tornado conflicts for: jupyterlab -> tornado[version='!=6.0.0,!=6.0.1,!=6.0.2|>=6.1|>=6.1.0'] pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> tornado ase=3.22 -> matplotlib-base -> tornado seaborn -> matplotlib-base[version='>=2.1.2'] -> tornado matplotlib -> tornado ipywidgets -> ipykernel[version='>=4.5.1'] -> tornado[version='>=4|>=4,<6|>=4.0|>=4.2|>=4.2,<7.0|>=5.0,<7.0|>=6.1|>=5.0|>=5.0,<7|>=4.1,<7'] jupyterlab -> notebook[version='>=4.3.1'] -> tornado[version='>=4|>=4,<6|>=4.1,<7|>=5.0|>=5.0,<7'] nglview -> notebook -> tornado[version='>=4.0|>=4.2|>=4.2,<7.0|>=4|>=4,<6|>=4.1,<7|>=5.0,<7|>=5.0|>=6.1|>=5.0,<7.0']

    Package singledispatch conflicts for: jupyterlab -> tornado[version='!=6.0.0,!=6.0.1,!=6.0.2'] -> singledispatch pylint -> singledispatch matplotlib -> tornado -> singledispatch

    Package certifi conflicts for: pip -> setuptools -> certifi[version='>=2016.09|>=2016.9.26|>=2017.4.17'] pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> certifi[version='>=2017.4.17|>=2020.06.20'] matminer=0.7.3 -> requests[version='>=2.20.0'] -> certifi[version='>=2017.4.17'] seaborn -> matplotlib-base[version='>=2.1.2'] -> certifi[version='>=2020.06.20'] pyg=2.0.1 -> requests -> certifi[version='>=2017.4.17'] matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> certifi[version='>=2016.09|>=2016.9.26|>=2020.06.20'] ase=3.22 -> matplotlib-base -> certifi[version='>=2020.06.20'] jupyterlab -> tornado[version='!=6.0.0,!=6.0.1,!=6.0.2'] -> certifi

    Package ipykernel conflicts for: ipywidgets -> ipykernel[version='>=4.2.2|>=4.5.1'] nglview -> ipykernel[version='<4.7'] jupyterlab -> notebook[version='>=4.3.1'] -> ipykernel nglview -> ipywidgets[version='>=7'] -> ipykernel[version='>=4.2.2|>=4.5.1']

    Package wheel conflicts for: python=3.8 -> pip -> wheel pymatgen=2020.12.31 -> pip -> wheel matminer=0.7.3 -> pip -> wheel pytorch-lightning=1.3.8 -> tensorboard[version='>=2.2.0,!=2.5.0'] -> wheel[version='>=0.26'] jupyterlab -> jupyter-packaging[version='>=0.7,<1'] -> wheel pip -> wheel

    Package backports conflicts for: matplotlib -> backports.functools_lru_cache -> backports pylint -> backports.functools_lru_cache -> backports

    Package numexpr conflicts for: matminer=0.7.3 -> pandas[version='>=0.23.4'] -> numexpr[version='>=2.6.8|>=2.7.0|>=2.7.1'] seaborn -> pandas[version='>=0.22.0'] -> numexpr[version='>=2.6.8|>=2.7.0|>=2.7.1'] pymatgen=2020.12.31 -> pandas -> numexpr[version='>=2.6.8|>=2.7.0|>=2.7.1'] pyg=2.0.1 -> pandas -> numexpr[version='>=2.6.8|>=2.7.0|>=2.7.1']

    Package numpy-base conflicts for: pyg=2.0.1 -> numpy -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.|1.17.3.|1.17.4.|1.18.1.|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0|1.17.0|1.17.0',build='py37hc3f5095_0|py36hc3f5095_0|py37h5c71026_6|py27h0bb1d87_6|py36h5c71026_7|py37h5c71026_7|py37h5c71026_7|py37h5c71026_8|py27h0bb1d87_8|py35h4a99626_9|py36h4a99626_9|py37h4a99626_9|py27hfef472a_9|py37h8128ebf_9|py36h8128ebf_9|py35h8128ebf_9|py27h2753ae9_9|py35h8128ebf_10|py36h8128ebf_10|py36h8128ebf_11|py37h8128ebf_11|py37h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py36hc3f5095_12|py36h555522e_1|py36h5c71026_0|py27h0bb1d87_1|py37h5c71026_1|py37h5c71026_3|py36h5c71026_4|py35h4a99626_4|py36h8128ebf_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py37hc3f5095_5|py27hb1d0314_5|py35h4a99626_0|py36h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py35h8128ebf_0|py36h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py27hb1d0314_0|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py36h5bb6eb2_3|py39h378b42e_4|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1|py37h378b42e_4|py38h378b42e_4|py38h5bb6eb2_3|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py27hb1d0314_0|py38hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_1|py27hb1d0314_1|py36hc3f5095_1|py27hb1d0314_0|py36hc3f5095_0|py27h2753ae9_0|py37h8128ebf_0|py27h2753ae9_0|py27h2753ae9_1|py27h2753ae9_0|py35h8128ebf_0|py27h2753ae9_0|py27hfef472a_0|py36hc3f5095_5|py38hc3f5095_4|py37h5c71026_4|py27h0bb1d87_4|py36h5c71026_3|py27h0bb1d87_3|py27h0bb1d87_2|py37h5c71026_2|py36h5c71026_2|py36h5c71026_1|py37h5c71026_0|py36h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h917549b_1|py35h555522e_1|py38hc3f5095_12|py27hb1d0314_12|py36h2a9b21d_11|py27h2753ae9_10|py37h8128ebf_10|py35h4a99626_8|py36h5c71026_8|py36h5c71026_7|py27h0bb1d87_7|py35h5c71026_7|py27h0bb1d87_7|py36h5c71026_6'] ase=3.22 -> numpy -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.|1.17.3.|1.17.4.|1.18.1.|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0|1.17.0|1.17.0',build='py37hc3f5095_0|py36hc3f5095_0|py37h5c71026_6|py27h0bb1d87_6|py36h5c71026_7|py37h5c71026_7|py37h5c71026_7|py37h5c71026_8|py27h0bb1d87_8|py35h4a99626_9|py36h4a99626_9|py37h4a99626_9|py27hfef472a_9|py37h8128ebf_9|py36h8128ebf_9|py35h8128ebf_9|py27h2753ae9_9|py35h8128ebf_10|py36h8128ebf_10|py36h8128ebf_11|py37h8128ebf_11|py37h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py36hc3f5095_12|py36h555522e_1|py36h5c71026_0|py27h0bb1d87_1|py37h5c71026_1|py37h5c71026_3|py36h5c71026_4|py35h4a99626_4|py36h8128ebf_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py37hc3f5095_5|py27hb1d0314_5|py35h4a99626_0|py36h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py35h8128ebf_0|py36h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py27hb1d0314_0|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py36h5bb6eb2_3|py39h378b42e_4|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1|py37h378b42e_4|py38h378b42e_4|py38h5bb6eb2_3|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py27hb1d0314_0|py38hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_1|py27hb1d0314_1|py36hc3f5095_1|py27hb1d0314_0|py36hc3f5095_0|py27h2753ae9_0|py37h8128ebf_0|py27h2753ae9_0|py27h2753ae9_1|py27h2753ae9_0|py35h8128ebf_0|py27h2753ae9_0|py27hfef472a_0|py36hc3f5095_5|py38hc3f5095_4|py37h5c71026_4|py27h0bb1d87_4|py36h5c71026_3|py27h0bb1d87_3|py27h0bb1d87_2|py37h5c71026_2|py36h5c71026_2|py36h5c71026_1|py37h5c71026_0|py36h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h917549b_1|py35h555522e_1|py38hc3f5095_12|py27hb1d0314_12|py36h2a9b21d_11|py27h2753ae9_10|py37h8128ebf_10|py35h4a99626_8|py36h5c71026_8|py36h5c71026_7|py27h0bb1d87_7|py35h5c71026_7|py27h0bb1d87_7|py36h5c71026_6'] pytorch=1.8.1 -> numpy[version='>=1.19'] -> numpy-base[version='1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3',build='py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1'] matplotlib -> numpy=1.11 -> numpy-base[version='1.11.3|1.22.3|1.22.3|1.22.3|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.2|1.21.2|1.21.2|1.21.2|1.20.3|1.20.3|1.20.3|1.20.2|1.20.2|1.20.2|1.20.1|1.20.1|1.20.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.1|1.19.1|1.19.1|1.18.5.|1.18.1.|1.17.4.|1.17.3.|1.17.2.*|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.5|1.16.5|1.16.5|1.16.4|1.16.4|1.16.3|1.16.3|1.16.3|1.16.2|1.16.2|1.16.2|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.3|1.15.3|1.15.3|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.1|1.15.1|1.15.1|1.15.1|1.15.0|1.15.0|1.15.0|1.15.0|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.17.0|1.17.0|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.4|1.14.4|1.14.4|1.14.3|1.14.3|1.14.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0',build='py37h5c71026_6|py36h5c71026_6|py27h0bb1d87_6|py37h5c71026_7|py35h555522e_1|py36h555522e_1|py27h0bb1d87_0|py27h0bb1d87_1|py36h5c71026_1|py36h5c71026_3|py37h5c71026_3|py27h0bb1d87_4|py36h5c71026_4|py35h4a99626_4|py37hc3f5095_0|py36hc3f5095_0|py36h8128ebf_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py38hc3f5095_4|py37hc3f5095_5|py27hb1d0314_5|py35h4a99626_0|py36h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py36h8128ebf_0|py35h8128ebf_0|py37h8128ebf_0|py27h2753ae9_1|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py36hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py27hb1d0314_0|py37hc3f5095_1|py27hb1d0314_1|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py27hb1d0314_0|py38ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py39hbd0edd7_0|py39hc2deb75_0|py38hc2deb75_0|py38h0829f74_0|py39hc2deb75_0|py38hc2deb75_0|py38hca35cd5_1|py39hca35cd5_1|py310h206c741_1|py38hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py310h206c741_0|py38hca35cd5_0|py37h5c71026_7|py37h5c71026_8|py27h0bb1d87_8|py35h4a99626_9|py36h4a99626_9|py37h8128ebf_9|py35h8128ebf_9|py36h8128ebf_10|py27h2753ae9_10|py36h8128ebf_11|py37h8128ebf_11|py37h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py36hc3f5095_12|py38hc3f5095_12|py27hb1d0314_12|py36h2a9b21d_11|py37h8128ebf_10|py35h8128ebf_10|py27h2753ae9_9|py36h8128ebf_9|py27hfef472a_9|py37h4a99626_9|py35h4a99626_8|py36h5c71026_8|py36h5c71026_7|py27h0bb1d87_7|py39hca35cd5_0|py39hca35cd5_3|py37hca35cd5_2|py39hca35cd5_2|py37hca35cd5_1|py37hc2deb75_0|py310hedd7904_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py37hc2deb75_0|py38haf7ebc8_0|py39haf7ebc8_0|py37haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1|py36ha3acd2a_0|py37ha3acd2a_0|py37h378b42e_4|py39h378b42e_4|py38h378b42e_4|py38h5bb6eb2_3|py36h5bb6eb2_3|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py38hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_1|py36hc3f5095_1|py27hb1d0314_0|py36hc3f5095_1|py36hc3f5095_0|py27hb1d0314_0|py27h2753ae9_0|py27h2753ae9_0|py37h8128ebf_0|py36h8128ebf_0|py27h2753ae9_0|py27h2753ae9_0|py35h8128ebf_0|py27hfef472a_0|py36hc3f5095_5|py37h5c71026_4|py27h0bb1d87_3|py27h0bb1d87_2|py37h5c71026_2|py36h5c71026_2|py37h5c71026_1|py37h5c71026_0|py36h5c71026_0|py35h5c71026_0|py27h0bb1d87_0|py36h5c71026_0|py35h5c71026_0|py27h917549b_1|py35h5c71026_7|py36h5c71026_7|py27h0bb1d87_7'] nglview -> numpy -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.|1.17.3.|1.17.4.|1.18.1.|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0|1.17.0|1.17.0',build='py37hc3f5095_0|py36hc3f5095_0|py37h5c71026_6|py27h0bb1d87_6|py36h5c71026_7|py37h5c71026_7|py37h5c71026_7|py37h5c71026_8|py27h0bb1d87_8|py35h4a99626_9|py36h4a99626_9|py37h4a99626_9|py27hfef472a_9|py37h8128ebf_9|py36h8128ebf_9|py35h8128ebf_9|py27h2753ae9_9|py35h8128ebf_10|py36h8128ebf_10|py36h8128ebf_11|py37h8128ebf_11|py37h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py36hc3f5095_12|py36h555522e_1|py36h5c71026_0|py27h0bb1d87_1|py37h5c71026_1|py37h5c71026_3|py36h5c71026_4|py35h4a99626_4|py36h8128ebf_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py37hc3f5095_5|py27hb1d0314_5|py35h4a99626_0|py36h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py35h8128ebf_0|py36h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py27hb1d0314_0|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py36h5bb6eb2_3|py39h378b42e_4|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1|py37h378b42e_4|py38h378b42e_4|py38h5bb6eb2_3|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py27hb1d0314_0|py38hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_1|py27hb1d0314_1|py36hc3f5095_1|py27hb1d0314_0|py36hc3f5095_0|py27h2753ae9_0|py37h8128ebf_0|py27h2753ae9_0|py27h2753ae9_1|py27h2753ae9_0|py35h8128ebf_0|py27h2753ae9_0|py27hfef472a_0|py36hc3f5095_5|py38hc3f5095_4|py37h5c71026_4|py27h0bb1d87_4|py36h5c71026_3|py27h0bb1d87_3|py27h0bb1d87_2|py37h5c71026_2|py36h5c71026_2|py36h5c71026_1|py37h5c71026_0|py36h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h917549b_1|py35h555522e_1|py38hc3f5095_12|py27hb1d0314_12|py36h2a9b21d_11|py27h2753ae9_10|py37h8128ebf_10|py35h4a99626_8|py36h5c71026_8|py36h5c71026_7|py27h0bb1d87_7|py35h5c71026_7|py27h0bb1d87_7|py36h5c71026_6'] pytorch-lightning=1.3.8 -> numpy[version='>=1.17.2'] -> numpy-base[version='1.17.2.|1.17.3.|1.17.4.|1.18.1.|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3',build='py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1'] pymatgen=2020.12.31 -> numpy[version='>=1.19.4,<2.0a0'] -> numpy-base[version='1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3',build='py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0'] seaborn -> numpy[version='>=1.13.3'] -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.|1.17.3.|1.17.4.|1.18.1.|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.17.0|1.17.0|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0',build='py37h5c71026_6|py36h5c71026_6|py37h5c71026_7|py36h5c71026_7|py37h5c71026_8|py27h0bb1d87_8|py35h4a99626_9|py36h4a99626_9|py27hfef472a_9|py37h8128ebf_9|py35h8128ebf_10|py36h8128ebf_10|py27h2753ae9_10|py36h8128ebf_11|py37h8128ebf_11|py37h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py36hc3f5095_12|py37hc3f5095_0|py36h555522e_1|py36h5c71026_0|py27h0bb1d87_1|py37h5c71026_1|py37h5c71026_3|py36h5c71026_4|py35h4a99626_4|py36h8128ebf_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py37hc3f5095_5|py27hb1d0314_5|py35h4a99626_0|py36h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py35h8128ebf_0|py36h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py27hb1d0314_0|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py37hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py36h5bb6eb2_3|py39h378b42e_4|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1|py37h378b42e_4|py38h378b42e_4|py38h5bb6eb2_3|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py27hb1d0314_0|py38hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_1|py27hb1d0314_1|py36hc3f5095_1|py27hb1d0314_0|py36hc3f5095_0|py27h2753ae9_0|py37h8128ebf_0|py27h2753ae9_0|py27h2753ae9_1|py27h2753ae9_0|py35h8128ebf_0|py27h2753ae9_0|py27hfef472a_0|py36hc3f5095_5|py38hc3f5095_4|py37h5c71026_4|py27h0bb1d87_4|py36h5c71026_3|py27h0bb1d87_3|py27h0bb1d87_2|py37h5c71026_2|py36h5c71026_2|py36h5c71026_1|py37h5c71026_0|py36h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h917549b_1|py35h555522e_1|py36hc3f5095_0|py38hc3f5095_12|py27hb1d0314_12|py36h2a9b21d_11|py37h8128ebf_10|py27h2753ae9_9|py35h8128ebf_9|py36h8128ebf_9|py37h4a99626_9|py35h4a99626_8|py36h5c71026_8|py37h5c71026_7|py27h0bb1d87_7|py35h5c71026_7|py36h5c71026_7|py27h0bb1d87_7|py27h0bb1d87_6'] matminer=0.7.3 -> numpy[version='>=1.18.3'] -> numpy-base[version='1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3',build='py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py38ha3acd2a_0|py37ha3acd2a_0|py36ha3acd2a_0|py39hbd0edd7_0|py37haf7ebc8_0|py38haf7ebc8_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38h0829f74_0|py310hedd7904_0|py38hc2deb75_0|py37hca35cd5_1|py38hca35cd5_1|py39hca35cd5_1|py39hca35cd5_2|py310h206c741_2|py37hca35cd5_3|py38hca35cd5_3|py310h206c741_3|py39hca35cd5_0|py38hca35cd5_0|py310h206c741_0|py39hca35cd5_3|py37hca35cd5_2|py38hca35cd5_2|py310h206c741_1|py37hc2deb75_0|py39hc2deb75_0|py310h0829f74_0|py37h0829f74_0|py39h0829f74_0|py37hc2deb75_0|py39haf7ebc8_0|py38h5bb6eb2_1|py37h5bb6eb2_1|py39h5bb6eb2_1']

    Package matplotlib-base conflicts for: seaborn -> matplotlib-base[version='>=2.1.2'] seaborn -> seaborn-base[version='>=0.11.2,<0.11.3.0a0'] -> matplotlib-base[version='2.1.2|2.1.2|2.1.2|2.2.3|2.2.3|2.2.3|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|2.2.4|3.0.2|3.0.2|3.0.3|3.0.3|3.0.3|3.0.3|3.1.0|3.1.0|3.1.0|3.1.0|3.1.1|3.1.1|3.1.1|3.1.1|3.1.1|3.1.1|3.1.1|3.1.1|3.1.2|3.1.2|3.1.2|3.1.2|3.1.2|3.1.2|3.1.3|3.1.3|3.1.3|>=2.2|>=3.5.2,<3.5.3.0a0|>=3.5.1,<3.5.2.0a0|>=3.5.0,<3.5.1.0a0|>=3.4.3,<3.4.4.0a0|>=3.4.2,<3.4.3.0a0|>=3.4.1,<3.4.2.0a0|>=3.3.4,<3.3.5.0a0|>=3.3.3,<3.3.4.0a0|>=3.3.2,<3.3.3.0a0|>=3.3.1,<3.3.2.0a0|>=3.3.0,<3.3.1.0a0|>=3.2.2,<3.2.3.0a0|>=3.2.1,<3.2.2.0a0|>=3.2.0,<3.2.1.0a0|>=2.2.5,<2.2.6.0a0|3.1.3|3.1.3|3.1.3|3.1.2|3.1.2|3.1.2',build='py37h64f37c6_1|py37h64f37c6_0|py27h6595424_1|py36h2981e6d_1|py27he27c676_0|py37h2852a4a_0|py27h6595424_1|py36h3e3dc42_0|py37h3e3dc42_0|py37h3e3dc42_0|py37h2852a4a_0|py37h2852a4a_1|py38h2981e6d_1|py36h2981e6d_0|py37h2981e6d_0|py38h2981e6d_0|py36h2981e6d_1|py38h2981e6d_1|py36h2981e6d_0|py38h2981e6d_0|py37h2981e6d_0|py37h2981e6d_1|py37h2981e6d_2|py36h2981e6d_2|py38h2981e6d_2|py36h2852a4a_1|py36h2852a4a_0|py36h2852a4a_1|py37h2852a4a_1|py36h3e3dc42_0|py37h3e3dc42_1|py36h3e3dc42_1|py37h3e3dc42_1002|py36h3e3dc42_1002|py27h6595424_2|py37h2981e6d_2|py36h2981e6d_2|py38h2981e6d_2|py36h2981e6d_1|py37h2981e6d_1|py36h2852a4a_0|py37ha47f3eb_1|py36ha47f3eb_1|py27hf194043_1|py37h2981e6d_1|py38h64f37c6_0|py36h64f37c6_0|py36h64f37c6_1|py38h64f37c6_1']

    Package wincertstore conflicts for: pip -> setuptools -> wincertstore[version='>=0.2'] matplotlib -> setuptools -> wincertstore[version='>=0.2']

    Package pandas conflicts for: seaborn -> pandas[version='>=0.14.0|>=0.22.0|>=0.23'] seaborn -> statsmodels[version='>=0.8.0'] -> pandas[version='>=0.14|>=0.21|>=1.0']

    Package markupsafe conflicts for: pyg=2.0.1 -> jinja2 -> markupsafe[version='>=0.23|>=0.23,<2|>=0.23,<2.1|>=2.0|>=2.0.0rc2'] jupyterlab -> jinja2[version='>=2.10'] -> markupsafe[version='>=0.23|>=0.23,<2|>=0.23,<2.1|>=2.0|>=2.0.0rc2']

    Package typing conflicts for: pymatgen=2020.12.31 -> ruamel.yaml[version='>=0.15.6'] -> typing pytorch=1.8.1 -> typing_extensions -> typing[version='>=3.6.2|>=3.7.4'] pylint -> tomlkit[version='>=0.10.1'] -> typing[version='>=3.6,<4.0|>=3.7.4|>=3.6.2']

    Package backports.functools_lru_cache conflicts for: seaborn -> matplotlib-base[version='>=2.1.2'] -> backports.functools_lru_cache ase=3.22 -> matplotlib-base -> backports.functools_lru_cache pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> backports.functools_lru_cache matplotlib -> backports.functools_lru_cache pylint -> backports.functools_lru_cache

    Package dataclasses conflicts for: pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] -> dataclasses pymatgen=2020.12.31 -> dataclasses[version='>=0.6'] pyg=2.0.1 -> pytorch=1.9 -> dataclasses matminer=0.7.3 -> pymatgen[version='>=2019.10.2'] -> dataclasses[version='>=0.6'] jupyterlab -> jupyter_server[version='>=1.4,<2'] -> dataclasses pytorch=1.8.1 -> dataclasses

    Package qt conflicts for: pymatgen=2020.12.31 -> vtk[version='>=6.0.0'] -> qt[version='>=5.12.9,<5.13.0a0'] matplotlib -> pyqt -> qt[version='4.8.|5.6.|5.9.*|>=5.12.5,<5.13.0a0|>=5.12.9,<5.13.0a0|>=5.9.7,<5.10.0a0|>=5.6.2,<5.7.0a0|>=5.9.6,<5.10.0a0|>=5.9.4,<5.10.0a0']

    Package pymatgen conflicts for: pymatgen=2020.12.31 matminer=0.7.3 -> pymatgen[version='>=2019.10.2']

    Package tomlkit conflicts for: jupyterlab -> jupyter-packaging[version='>=0.7,<1'] -> tomlkit pylint -> tomlkit[version='>=0.10.1']

    Package jupyter_core conflicts for: jupyterlab -> jupyter_core jupyterlab -> jupyter_server[version='>=1.16,<2'] -> jupyter_core[version='>=4.4.0|>=4.6.0|>=4.7|>=4.7.0|>=4.6.1']

    Package openblas conflicts for: pyg=2.0.1 -> numpy -> openblas[version='0.2.20|0.2.20.*|>=0.2.20,<0.2.21.0a0|>=0.3.3,<0.3.4.0a0'] ase=3.22 -> numpy -> openblas[version='0.2.20|0.2.20.*|>=0.2.20,<0.2.21.0a0|>=0.3.3,<0.3.4.0a0'] seaborn -> numpy[version='>=1.13.3'] -> openblas[version='0.2.20|0.2.20.*|>=0.2.20,<0.2.21.0a0|>=0.3.3,<0.3.4.0a0'] nglview -> numpy -> openblas[version='0.2.20|0.2.20.*|>=0.2.20,<0.2.21.0a0|>=0.3.3,<0.3.4.0a0'] matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> openblas[version='0.2.20|0.2.20.*|>=0.2.20,<0.2.21.0a0|>=0.3.3,<0.3.4.0a0']

    Package pyreadline conflicts for: ipywidgets -> ipython[version='>=4.0.0'] -> pyreadline jupyterlab -> ipython -> pyreadline pylint -> dill[version='>=0.2'] -> pyreadline[version='>=1.7.1']

    Package pyparsing conflicts for: pymatgen=2020.12.31 -> matplotlib-base[version='>=1.5'] -> pyparsing[version='>=2.0.3,!=2.0.4,!=2.1.2,!=2.1.6|>=2.2.1'] jupyterlab -> packaging -> pyparsing[version='<3,>=2.0.2|>=2.0.2,!=3.0.5|>=2.0.2,<3|>=2.0.2'] ase=3.22 -> matplotlib-base -> pyparsing[version='>=2.0.3,!=2.0.4,!=2.1.2,!=2.1.6|>=2.2.1'] pip -> packaging -> pyparsing[version='<3,>=2.0.2|>=2.0.2,!=3.0.5|>=2.0.2,<3|>=2.0.2'] pyg=2.0.1 -> pyparsing pytorch-lightning=1.3.8 -> packaging -> pyparsing[version='<3,>=2.0.2|>=2.0.2,!=3.0.5|>=2.0.2,<3|>=2.0.2'] matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> pyparsing[version='>=2.0.3,!=2.0.4,!=2.1.2,!=2.1.6|>=2.2.1'] matplotlib -> pyparsing matminer=0.7.3 -> httplib2[version='>=0.10.3'] -> pyparsing[version='>=2.4.2,<3|>=2.4.2,<4'] seaborn -> matplotlib-base[version='>=2.1.2'] -> pyparsing[version='>=2.0.3,!=2.0.4,!=2.1.2,!=2.1.6|>=2.2.1']

    Package vs2008_runtime conflicts for: seaborn -> python -> vs2008_runtime matplotlib -> python[version='>=2.7,<2.8.0a0'] -> vs2008_runtime[version='>=9.0.30729.1,<10.0a0'] pip -> python -> vs2008_runtime ipywidgets -> python -> vs2008_runtime pylint -> python[version='>=2.7,<2.8.0a0'] -> vs2008_runtime autopep8 -> python -> vs2008_runtime pytorch=1.8.1 -> ninja -> vs2008_runtime nglview -> python -> vs2008_runtime tqdm -> python[version='>=2.7'] -> vs2008_runtime jupyterlab -> python[version='>=2.7,<2.8.0a0'] -> vs2008_runtime

    Package kiwisolver conflicts for: matplotlib -> kiwisolver matplotlib -> matplotlib-base[version='>=3.5.2,<3.5.3.0a0'] -> kiwisolver[version='>=1.0.1']

    Package typing-extensions conflicts for: pylint -> typing-extensions[version='>=3.10.0'] matminer=0.7.3 -> pymatgen[version='>=2019.10.2'] -> typing-extensions[version='>=3.7.4.3'] matplotlib -> kiwisolver -> typing-extensions pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] -> typing-extensions pylint -> astroid[version='>=2.11.6,<2.12.0'] -> typing-extensions[version='>=3.10|>=3.7.4']

    Package scipy conflicts for: pymatgen=2020.12.31 -> scipy[version='>=1.4.1'] seaborn -> statsmodels[version='>=0.8.0'] -> scipy[version='>=0.14|>=1.2|>=1.3'] ase=3.22 -> scipy pymatgen=2020.12.31 -> ase[version='>=3.3'] -> scipy[version='>=1.5,!=1.6.1|>=1.8'] matminer=0.7.3 -> ase[version='>=3.14.1'] -> scipy[version='>=0.19.1|>=1.0.1|>=1.4.1|>=1.5.0|>=1.1.0'] seaborn -> scipy[version='>=0.15.2|>=1.0.1|>=1.0'] pyg=2.0.1 -> networkx[version='>=2.4'] -> scipy[version='>=0.19.1|>=1.1.0|>=1.5,!=1.6.1|>=1.8']

    Package importlib_metadata conflicts for: matminer=0.7.3 -> pint[version='>=0.8.1'] -> importlib_metadata jupyterlab -> jupyterlab_server[version='>=2.10,<3'] -> importlib_metadata[version='>=3.6']

    Package matplotlib conflicts for: pymatgen=2020.12.31 -> ase[version='>=3.3'] -> matplotlib[version='>=3.3'] matplotlib seaborn -> matplotlib[version='>=1.4.3|>=2.1.2|>=2.2'] matminer=0.7.3 -> ase[version='>=3.14.1'] -> matplotlib[version='>=1.5']

    Package ipywidgets conflicts for: nglview -> ipywidgets[version='7|>=7|>=5.2.2|>=5.2.2,<6'] ipywidgets

    Package yaml conflicts for: pyg=2.0.1 -> pyyaml -> yaml[version='>=0.1.7,<0.2.0a0|>=0.2.2,<0.3.0a0|>=0.2.5,<0.3.0a0'] pytorch-lightning=1.3.8 -> pyyaml[version='>=5.1,<=5.4.1'] -> yaml[version='>=0.1.7,<0.2.0a0|>=0.2.2,<0.3.0a0|>=0.2.5,<0.3.0a0']

    Package ucrt conflicts for: python=3.8 -> vs2015_runtime[version='>=14.16.27033'] -> ucrt[version='>=10.0.20348.0'] matplotlib -> vs2015_runtime[version='>=14.16.27012,<15.0a0'] -> ucrt[version='>=10.0.20348.0'] pymatgen=2020.12.31 -> vs2015_runtime[version='>=14.16.27012'] -> ucrt[version='>=10.0.20348.0']

    Package threadpoolctl conflicts for: pyg=2.0.1 -> scikit-learn -> threadpoolctl[version='>=2.0.0'] matminer=0.7.3 -> scikit-learn[version='>=0.21.3'] -> threadpoolctl[version='>=2.0.0']

    Package tbb conflicts for: pytorch=1.8.1 -> mkl[version='>=2018'] -> tbb=2021 pymatgen=2020.12.31 -> vtk[version='>=6.0.0'] -> tbb[version='<2021.0.0a0|>=2020.2|>=2020.2,<2021.0.0a0|>=2021.4.0|>=2021.5.0|>=2019.9|>=2019.7|>=2019.6|>=2019.5|>=2019.4|>=2019.3|>=2019.0|>=2019.1']

    Package future conflicts for: pytorch-lightning=1.3.8 -> future matminer=0.7.3 -> future[version='>=0.16.0'] pymatgen=2020.12.31 -> uncertainties -> future

    Package werkzeug conflicts for: pytorch-lightning=1.3.8 -> tensorboard[version='>=2.2.0,!=2.5.0'] -> werkzeug[version='>=0.11.15|>=1.0.1'] ase=3.22 -> flask -> werkzeug[version='>=0.14|>=0.15|>=0.15,<2.0|>=2.0|>=0.7|>=0.7,<1.0.0']

    Package pytorch-mutex conflicts for: pyg=2.0.1 -> cpuonly -> pytorch-mutex==1.0=cpu cpuonly -> pytorch-mutex==1.0=cpu pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] -> pytorch-mutex==1.0[build='cpu|cuda']

    Package pytorch conflicts for: pytorch-lightning=1.3.8 -> torchmetrics[version='>=0.2.0'] -> pytorch[version='>=1.3|>=1.3.1'] pytorch-lightning=1.3.8 -> pytorch[version='>=1.4'] pytorch=1.8.1

    Package notebook conflicts for: jupyterlab -> nbclassic[version='>=0.2,<1'] -> notebook[version='<7|>=4.2.0'] jupyterlab -> notebook[version='>=4.2|>=4.3|>=4.3.1']

    Package libpng conflicts for: matplotlib -> libpng[version='>=1.6.23,<1.7|>=1.6.37,<1.7.0a0|>=1.6.36,<1.7.0a0|>=1.6.35,<1.7.0a0|>=1.6.34,<1.7.0a0|>=1.6.32,<1.7.0a0'] matplotlib -> freetype=2.6 -> libpng[version='1.6.*|>=1.6.21,<1.7|>=1.6.32,<1.6.35']

    Package numpy conflicts for: seaborn -> numpy[version='>=1.13.3|>=1.9.3|>=1.15'] seaborn -> statsmodels[version='>=0.8.0'] -> numpy[version='1.10.|1.11.|1.12.|1.13.|>=1.11.|>=1.11.3,<2.0a0|>=1.11|>=1.14.6,<2.0a0|>=1.15.4,<2.0a0|>=1.16.5,<2.0a0|>=1.16.6,<2.0a0|>=1.18.5,<2.0a0|>=1.19.5,<2.0a0|>=1.21.5,<2.0a0|>=1.21.4,<2.0a0|>=1.19.2,<2.0a0|>=1.18.1,<2.0a0|>=1.17.5,<2.0a0|>=1.21.2,<2.0a0|>=1.17.0,<2.0a0|>=1.19.1,<2.0a0|>=1.17|>=1.21.6,<2.0a0|>=1.19.4,<2.0a0|>=1.12.1,<2.0a0|>=1.9.|>=1.20.3,<2.0a0|>=1.20.2,<2.0a0|>=1.13.3,<2.0a0|>=1.15.1,<2.0a0|>=1.9|>=1.8|>=1.7|>=1.11.3,<1.12.0a0|>=1.4.0']The following specifications were found to be incompatible with your system:

    • feature:/win-64::__win==0=0
    • feature:|@/win-64::__win==0=0
    • ipywidgets -> ipykernel[version='>=4.5.1'] -> __win
    • nglview -> ipykernel -> __win

    Your installed version is: 0`

    opened by cseeg 0
Owner
Tian Xie
Postdoc at MIT CSAIL. Machine learning algorithms for materials, drugs, and beyond.
Tian Xie
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 5, 2023
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

null 157 Dec 22, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

null 375 Dec 31, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

null 8 May 25, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

null 152 Nov 4, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 7, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 7, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 1, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 4, 2023
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

null 118 Dec 12, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 7, 2023
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 2, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022