Hello, I'm doing some research on small object detection. When I use your mmdetection based code, I follow "configs2/TinyPerson/base/Baseline_TinyPerson.sh:exp1.2 "can never achieve better results than map48. Can you give me a detailed experimental configuration and experimental log, or give me some suggestions?
I used two Titan V GPUs and tried a variety of combinations of batch and LR. The best result was only map0.4745 at one time. The following is my experiment log.
model = dict(
type='FasterRCNN',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[2],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0,
nms_across_levels=False,
nms_post=1000,
max_num=1000),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0,
nms_across_levels=False,
nms_post=1000,
max_num=1000),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=-1,
do_tile_as_aug=False)))
dataset_type = 'CocoFmtDataset'
data_root = './data/tiny_set/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale_factor=[1.0], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='CroppedTilesFlipAug',
tile_shape=(640, 512),
tile_overlap=(100, 100),
scale_factor=[1.0],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=1,
train=dict(
type='CocoFmtDataset',
ann_file=
'./data/tiny_set/mini_annotations/tiny_set_train_sw640_sh512_all_erase.json',
img_prefix=
'./data/tiny_set/erase_with_uncertain_dataset/train/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale_factor=[1.0], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore'])
]),
val=dict(
type='CocoFmtDataset',
ann_file=
'./data/tiny_set/mini_annotations/tiny_set_test_all.json',
img_prefix='./data/tiny_set/test/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='CroppedTilesFlipAug',
tile_shape=(640, 512),
tile_overlap=(100, 100),
scale_factor=[1.0],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoFmtDataset',
ann_file=
'./data/tiny_set/mini_annotations/tiny_set_test_all.json',
img_prefix='./data/tiny_set/test/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='CroppedTilesFlipAug',
tile_shape=(640, 512),
tile_overlap=(100, 100),
scale_factor=[1.0],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
check = dict(stop_while_nan=True)
evaluation = dict(
interval=4,
metric='bbox',
iou_thrs=[0.25, 0.5, 0.75],
proposal_nums=[200],
cocofmt_kwargs=dict(
ignore_uncertain=True,
use_ignore_attr=True,
use_iod_for_ignore=True,
iod_th_of_iou_f='lambda iou: iou',
cocofmt_param=dict(evaluate_standard='tiny')))
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[6, 10])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir = './checkpoints/TinyPerson/faster_rcnn_r50_fpn_1x_TinyPerson640/old640x512_lr0.01_1x_2g_1IMGpGPU/'
gpu_ids = range(0, 2)
Here are the results of my experiment
2021-08-23 15:39:36,557 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= all | maxDets=200 ] = 0.7075
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= tiny | maxDets=200 ] = 0.6759
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= tiny1 | maxDets=200 ] = 0.4847
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= tiny2 | maxDets=200 ] = 0.7375
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= tiny3 | maxDets=200 ] = 0.7801
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area= small | maxDets=200 ] = 0.8247
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.25 | area=reasonable | maxDets=200 ] = 0.8164
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=200 ] = 0.5080
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= tiny | maxDets=200 ] = 0.4745
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= tiny1 | maxDets=200 ] = 0.3062
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= tiny2 | maxDets=200 ] = 0.5281
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= tiny3 | maxDets=200 ] = 0.5844
2021-08-23 15:39:36,558 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area= small | maxDets=200 ] = 0.6339
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50 | area=reasonable | maxDets=200 ] = 0.6218
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=200 ] = 0.0759
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= tiny | maxDets=200 ] = 0.0617
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= tiny1 | maxDets=200 ] = 0.0251
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= tiny2 | maxDets=200 ] = 0.0579
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= tiny3 | maxDets=200 ] = 0.0926
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area= small | maxDets=200 ] = 0.1167
2021-08-23 15:39:36,559 - mmdet - INFO - Average Precision (AP) @[ IoU=0.75 | area=reasonable | maxDets=200 ] = 0.1183
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= all | maxDets=200 ] = 0.8626
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= tiny | maxDets=200 ] = 0.8344
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= tiny1 | maxDets=200 ] = 0.7085
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= tiny2 | maxDets=200 ] = 0.8701
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= tiny3 | maxDets=200 ] = 0.8925
2021-08-23 15:39:36,559 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area= small | maxDets=200 ] = 0.9151
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.25 | area=reasonable | maxDets=200 ] = 0.9277
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= all | maxDets=200 ] = 0.7154
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= tiny | maxDets=200 ] = 0.6776
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= tiny1 | maxDets=200 ] = 0.5109
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= tiny2 | maxDets=200 ] = 0.7081
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= tiny3 | maxDets=200 ] = 0.7590
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area= small | maxDets=200 ] = 0.7827
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.50 | area=reasonable | maxDets=200 ] = 0.7900
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= all | maxDets=200 ] = 0.2084
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= tiny | maxDets=200 ] = 0.1829
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= tiny1 | maxDets=200 ] = 0.1020
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= tiny2 | maxDets=200 ] = 0.1839
2021-08-23 15:39:36,560 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= tiny3 | maxDets=200 ] = 0.2323
2021-08-23 15:39:36,561 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area= small | maxDets=200 ] = 0.2447
2021-08-23 15:39:36,561 - mmdet - INFO - Average Recall (AR) @[ IoU=0.75 | area=reasonable | maxDets=200 ] = 0.2676
2021-08-23 15:39:36,606 - mmdet - INFO - Exp name: faster_rcnn_r50_fpn_1x_TinyPerson640.py
2021-08-23 15:39:36,607 - mmdet - INFO - Epoch(val) [12][393] bbox_mAP: 0.7080, bbox_mAP_50: 0.6760, bbox_mAP_75: 0.4850, bbox_mAP_s: 0.7380, bbox_mAP_m: 0.7800, bbox_mAP_l: 0.8250, bbox_mAP_copypaste: 0.708 0.676 0.485 0.738 0.780 0.825