HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

Related tags

Deep Learning HiFT
Overview

HiFT: Hierarchical Feature Transformer for Aerial Tracking

Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li

Our paper is Accepted by ICCV 2021.

Abstract

Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accuracy in complex scenarios or separately use multiple maps for decision making, introducing intractable computations for aerial mobile platforms. Thus, in this work, we propose an efficient and effective hierarchical feature transformer (HiFT) for aerial tracking. Hierarchical similarity maps generated by multi-level convolutional layers are fed into the feature transformer to achieve the interactive fusion of spatial (shallow layers) and semantics cues (deep layers). Consequently, not only the global contextual information can be raised, facilitating the target search, but also our end-to-end architecture with the transformer can efficiently learn the interdependencies among multi-level features, thereby discovering a tracking-tailored feature space with strong discriminability. Comprehensive evaluations on four aerial benchmarks have proven the effectiveness of HiFT. Real-world tests on the aerial platform have strongly validated its practicability with a real-time speed.

Workflow of our tracker

This figure shows the workflow of our tracker.

About Code

1. Environment setup

This code has been tested on Ubuntu 18.04, Python 3.8.3, Pytorch 0.7.0/1.6.0, CUDA 10.2. Please install related libraries before running this code:

pip install -r requirements.txt

2. Test

Download pretrained model: general_model(code: c99t) and put it into tools/snapshot directory.

Download testing datasets and put them into test_dataset directory. If you want to test the tracker on a new dataset, please refer to pysot-toolkit to set test_dataset.

python test.py                                
	--dataset UAV10fps                 #dataset_name
	--snapshot snapshot/general_model.pth  # tracker_name

The testing result will be saved in the results/dataset_name/tracker_name directory.

3. Train

Prepare training datasets

Download the datasets:

Note: train_dataset/dataset_name/readme.md has listed detailed operations about how to generate training datasets.

Train a model

To train the SiamAPN model, run train.py with the desired configs:

cd tools
python train.py

4. Evaluation

We provide the tracking results (code: tj12) of UAV123@10fps, DTB70, UAV20L, and UAV123. If you want to evaluate the tracker, please put those results into results directory.

python eval.py 	                          \
	--tracker_path ./results          \ # result path
	--dataset UAV20                  \ # dataset_name
	--tracker_prefix 'general_model'   # tracker_name

5. Contact

If you have any questions, please contact me.

Ziang Cao

Email: [email protected]

Qualitative Evaluation

Compared with deeper trackers

Performance Comparison

Compared with deeper trackers

Result on DTB70 and UAV20L

For more evaluations, please refer to our paper.

References

@INPROCEEDINGS{cao2021iccv,       
	author={Cao, Ziang and Fu, Changhong and Ye, Junjie and Li, Bowen and Li, Yiming},   
	booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, 
	title={{HiFT: Hierarchical Feature Transformer for Aerial Tracking}},
	year={2021},
	volume={},
	number={},
	pages={1-10}
}

Acknowledgement

The code is implemented based on pysot. We would like to express our sincere thanks to the contributors.

You might also like...
source code of “Visual Saliency Transformer” (ICCV2021)
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

Official code for
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

Tracking Pipeline helps you to solve the tracking problem more easily
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Python package for multiple object tracking research with focus on laboratory animals tracking.
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Comments
  • Could you please provide the result files of comparison trackers?

    Could you please provide the result files of comparison trackers?

    We notice that only the result files of your proposed tracker are uploaded on UAV123 and DTB70. We would greatly appreciate you if you can provide the result files of other comparison trackers in your paper, which will make us cite your work in our paper much more convenient.

    opened by bit-bcilab 1
  • 几个代码问题:encoder和label

    几个代码问题:encoder和label

    1、请问一下,我感觉这里self.gamma*weight*x应该不用再乘以x吧?否则跟论文里面不太一样,就是Cattention模块,也就是论文中的modulation layer https://github.com/vision4robotics/HiFT/blob/7f560e9ca1506f4b275f73e8c9ca4d34bec945ce/pysot/models/utile/tran.py#L32 2、这个标签生成方法是不是和SiamAPN用的是同一个?

    opened by laisimiao 1
Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

null 79 Jan 6, 2023
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video ?? Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

null 52 Dec 29, 2022
LBK 20 Dec 2, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022