To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

Related tags

Deep Learning jaxton
Overview

JaxTon

πŸ’― JAX exercises

License GitHub Twitter

Mission πŸš€

To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts.

JAX

The JAX package in Python is a library for high performance and efficient machine learning research.

It is commonly used for various deep learning tasks and runs seamlessly on CPUs, GPUs as well as TPUs.

Exercises πŸ“–

There are a total of 100 JAX exercises divided into 10 sets of Jupyter Notebooks with 10 exercises each. It is recommended to go through the exercises in order but you may start with any set depending on your expertise.

βœ… Structured as exercises & tutorials - Choose your style
βœ… Suitable for beginners, intermediates & experts - Choose your level
βœ… Available on Colab, Kaggle, Binder & GitHub - Choose your platform
βœ… Supports running on CPU, GPU & TPU - Choose your backend

Set 01 β€’ JAX Introduction β€’ Beginner β€’ Exercises 1-10

Style Colab Kaggle Binder GitHub
Exercises 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022
Solutions 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022

Set 02 β€’ Data Operations β€’ Beginner β€’ Exercises 11-20

Style Colab Kaggle Binder GitHub
Exercises 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022
Solutions 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022

Set 03 β€’ Pseudorandom Numbers β€’ Beginner β€’ Exercises 21-30

Style Colab Kaggle Binder GitHub
Exercises 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022
Solutions 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022

Set 04 β€’ Just-In-Time (JIT) Compilation β€’ Beginner β€’ Exercises 31-40

Style Colab Kaggle Binder GitHub
Exercises 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022
Solutions 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022

Set 05 β€’ Control Flows β€’ Beginner β€’ Exercises 41-50

Style Colab Kaggle Binder GitHub
Exercises 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022
Solutions 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022

Set 06 β€’ Automatic Differentiation β€’ Intermediate β€’ Exercises 51-60

Style Colab Kaggle Binder GitHub
Exercises 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022
Solutions 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022

Set 07 β€’ Automatic Vectorization β€’ Intermediate β€’ Exercises 61-70

Style Colab Kaggle Binder GitHub
Exercises 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022
Solutions 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022

Set 08 β€’ Pytrees β€’ Intermediate β€’ Exercises 71-80

Style Colab Kaggle Binder GitHub
Exercises 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022
Solutions 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022

Set 09 β€’ Neural Networks β€’ Expert β€’ Exercises 81-90

Style Colab Kaggle Binder GitHub
Exercises 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022
Solutions 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022

Set 10 β€’ Capstone Project β€’ Expert β€’ Exercises 91-100

Style Colab Kaggle Binder GitHub
Exercises 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022
Solutions 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022

The Jupyter Notebooks can also be run locally by cloning the repo and running on your local jupyter server.

git clone https://github.com/vopani/jaxton.git
python3 -m pip install notebook
jupyter notebook

P.S. The notebooks will be periodically updated to improve the exercises and support the latest version.

Contribution πŸ› οΈ

Please create an Issue for any improvements, suggestions or errors in the content.

You can also tag @vopani on Twitter for any other queries or feedback.

Credits πŸ™

JAX

License πŸ“‹

This project is licensed under the Apache License 2.0.

You might also like...
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Pytorch implementation of paper:
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provide a Top Academic Paper Chart for beginners and reseachers to take one step faster.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Comments
  • Small typo

    Small typo

    First of all, thanks for creating these.

    And this is not a big issue at all, but since everything is so perfect, you would also probably want to fix the last cell of the "Jaxton: Pseudorandom Numbers (Solutions)" notebook.

    It uses key_5 and not key_7 in the solution.

    image

    documentation 
    opened by shreyansh26 1
Owner
Rohan Rao
9-time Indian Sudoku Champion | Senior Data Scientist @h2oai | Quadruple Kaggle Grandmaster
Rohan Rao
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 3, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-library. These sub-libraries include both function-based and class-based transforms, composition operators, and have the option to provide metadata about the transform applied, including its intensity.

Facebook Research 4.6k Jan 9, 2023
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 7, 2023
LIAO Shuiying 6 Dec 1, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 9, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 7, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.

THUML @ Tsinghua University 2.2k Jan 3, 2023
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022