Deep Neural Network Prediction
Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num 10 -shuffle -d 1080ti
Step 2. Data Timeline parser : $ python3 preprocess_data.py -pt -pl pooling -d 1080ti
Step 3. Combine all raw data : $ python3 preprocess_data.py -c -pl pooling -d 1080ti
Step 4. Split raw data to train and test data as performance prediction inputs $ python3 preprocess_data.py -sp -pl pooling -d 1080ti
Step 5. Train Model :
python3 train_model.py -ftf ./utils/Feature_Target/conv_pre.json -log2file 1 -e 1000 -st 400 -sg 0.5 -lf maple -n perfnetA -pd 1080ti -pl convolution -psl pre
python3 train_model.py -ftf ./utils/Feature_Target/conv_exe.json -log2file 1 -e 1000 -st 400 -sg 0.5 -lf maple -n perfnetA -pd 1080ti -pl convolution -psl exe
python3 train_model.py -ftf ./utils/Feature_Target/conv_post.json -log2file 1 -e 1000 -st 400 -sg 0.5 -lf maple -n perfnetA -pd 1080ti -pl convolution -psl post
Step 6. Generate model csv file :
python3 verify_model.py -gmc --model lenet -b 1
Step 7. Predict model csv file :
python3 verify_model.py -pdm -n perfnetA -d 1080ti -l -eva -lf maple --model lenet -b 1
Or you can use script to predict all models with all batches:
python3 predict_script.py -n perfnetA -d 1080ti -lf maple