A curated list of promising OCR resources

Related tags

awesome-ocr
Overview

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources)

awesome-ocr

A curated list of promising OCR resources

Librarys

有2个api
都支持图片
百度自家的 :基本可以放弃
化验单识别:也只能提取化验单上三个字段的一个
第三方和阿里自己提供的 API 集中在身份证、银行卡、驾驶证、护照、电商商品评论文本、车牌、名片、贴吧文本、视频中的文本,多输出字符及相应坐标,卡片类可输出成结构化字段,价格在0.01左右
另外有三家提供了简历的解析,输出结果多为结构化字段,支持文档和图片格式 价格在0.1-0.3次不等
目前无第三方入驻,仅有腾讯自有的api 涵盖车牌、名片、身份证、驾驶证、银行卡、营业执照、通用印刷体,价格最高可达0.2左右。
OcrKing 从哪来?

OcrKing 源自2009年初 Aven 在数据挖掘中的自用项目,在对技术的执着和爱好的驱动下积累已近七载经多年的积累和迭代,如今已经进化为云架构的集多层神经网络与深度学习于一体的OCR识别系统2010年初为方便更多用户使用,特制作web版文字OCR识别,从始至今 OcrKing一直提供免费识别服务及开发接口,今后将继续提供免费云OCR识别服务。OcrKing从未做过推广,

但也确确实实默默地存在,因为他相信有需求的朋友肯定能找得到。欢迎把 OcrKing 在线识别介绍给您身边有类似需求的朋友!希望这个工具对你有用,谢谢各位的支持!

OcrKing 能做什么?

OcrKing 是一个免费的快速易用的在线云OCR平台,可以将PDF及图片中的内容识别出来,生成一个内容可编辑的文档。支持多种文件格式输入及输出,支持多语种(简体中文,繁体中文,英语,日语,韩语,德语,法语等)识别,支持多种识别方式, 支持多种系统平台, 支持多形式API调用!
Connectionist Temporal Classification is a loss function useful for performing supervised learning on sequence data, without needing an alignment between input data and labels. For example, CTC can be used to train end-to-end systems for speech recognition, which is how we have been using it at Baidu's Silicon Valley AI Lab.

Warp-CTC是一个可以应用在CPU和GPU上高效并行的CTC代码库 (library) 介绍 CTCConnectionist Temporal Classification作为一个损失函数,用于在序列数据上进行监督式学习,不需要对齐输入数据及标签。比如,CTC可以被用来训练端对端的语音识别系统,这正是我们在百度硅谷试验室所使用的方法。 端到端 系统 语音识别

检测单词,而不是检测出一个文本行

Papers

Building on recent advances in image caption generation and optical character recognition (OCR), we present a general-purpose, deep learning-based system to decompile an image into presentational markup. While this task is a well-studied problem in OCR, our method takes an inherently different, data-driven approach. Our model does not require any knowledge of the underlying markup language, and is simply trained end-to-end on real-world example data. The model employs a convolutional network for text and layout recognition in tandem with an attention-based neural machine translation system. To train and evaluate the model, we introduce a new dataset of real-world rendered mathematical expressions paired with LaTeX markup, as well as a synthetic dataset of web pages paired with HTML snippets. Experimental results show that the system is surprisingly effective at generating accurate markup for both datasets. While a standard domain-specific LaTeX OCR system achieves around 25% accuracy, our model reproduces the exact rendered image on 75% of examples. 

We present recursive recurrent neural networks with attention modeling (R2AM) for lexicon-free optical character recognition in natural scene images. The primary advantages of the proposed method are: (1) use of recursive convolutional neural networks (CNNs), which allow for parametrically efficient and effective image feature extraction; (2) an implicitly learned character-level language model, embodied in a recurrent neural network which avoids the need to use N-grams; and (3) the use of a soft-attention mechanism, allowing the model to selectively exploit image features in a coordinated way, and allowing for end-to-end training within a standard backpropagation framework. We validate our method with state-of-the-art performance on challenging benchmark datasets: Street View Text, IIIT5k, ICDAR and Synth90k.

Clustering is central to many data-driven application domains and has been studied extensively in terms of distance functions and grouping algorithms. Relatively little work has focused on learning representations for clustering. In this paper, we propose Deep Embedded Clustering (DEC), a method that simultaneously learns feature representations and cluster assignments using deep neural networks. DEC learns a mapping from the data space to a lower-dimensional feature space in which it iteratively optimizes a clustering objective. Our experimental evaluations on image and text corpora show significant improvement over state-of-the-art methods

In recent years, recognition of text from natural scene image and video frame has got increased attention among the researchers due to its various complexities and challenges. Because of low resolution, blurring effect, complex background, different fonts, color and variant alignment of text within images and video frames, etc., text recognition in such scenario is difficult. Most of the current approaches usually apply a binarization algorithm to convert them into binary images and next OCR is applied to get the recognition result. In this paper, we present a novel approach based on color channel selection for text recognition from scene images and video frames. In the approach, at first, a color channel is automatically selected and then selected color channel is considered for text recognition. Our text recognition framework is based on Hidden Markov Model (HMM) which uses Pyramidal Histogram of Oriented Gradient features extracted from selected color channel. From each sliding window of a color channel our color-channel selection approach analyzes the image properties from the sliding window and then a multi-label Support Vector Machine (SVM) classifier is applied to select the color channel that will provide the best recognition results in the sliding window. This color channel selection for each sliding window has been found to be more fruitful than considering a single color channel for the whole word image. Five different features have been analyzed for multi-label SVM based color channel selection where wavelet transform based feature outperforms others. Our framework has been tested on different publicly available scene/video text image datasets. For Devanagari script, we collected our own data dataset. The performances obtained from experimental results are encouraging and show the advantage of the proposed method.

Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.

Blogs

特征描述的完整过程 http://dataunion.org/wp-content/uploads/2015/05/640.webp_2.jpg

Presentations

Projects

Commercial products

作者:chenqin
链接:https://www.zhihu.com/question/19593313/answer/18795396
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

1,识别率极高。我使用过现在的答案总结里提到的所有软件,但遇到下面这样的表格,除了ABBYY还能保持95%以上的识别率之外(包括秦皇岛三个字),其他所有的软件全部歇菜,数字认错也就罢了,中文也认不出。血泪的教训。
![](https://pic3.zhimg.com/a1b8009516c105556d2a2df319c72d72_b.jpg)
2,自由度高。可以在同一页面手动划分不同的区块,每一个区块也可以分别设置表格或文字;简体繁体英文数字。而此时大部分软件还只能对一个页面设置一种识别方案,要么表格,要么文字。
3,批量操作方便。对于版式雷同的年鉴,将一页的版式设计好,便可以应用到其他页,省去大量重复操作。
4,可以保持原有表格格式,省去二次编辑。跨页识别表格时,选择“识别为EXCEL”,ABBYY可以将表格连在一起,产出的是一整个excel文件,分析起来就方便多了。
5,包括梯形校正,歪斜校正之类的许多图片校正方式,即使扫描得歪了,或者因为书本太厚而导致靠近书脊的部分文字扭曲,都可以校正回来。
Convert scanned images of documents into rich text with advanced Deep Learning OCR APIs. Free forever plans available.
  • IRIS
 真正能把中文OCR做得比较专业的,一共也没几家,国内2家,国外2家。国内是文通和汉王,国外是ABBYY和IRIS(台湾原来有2家丹青和蒙恬,这两年没什么动静了)。像大家提到的紫光OCR、CAJViewer、MS Office、清华OCR、包括慧视小灵鼠,这些都是文通的产品或者使用文通的识别引擎,尚书则是汉王的产品,和中晶扫描仪捆绑销售的。这两家的中文识别率都是非常不错的。而国外的2家,主要特点是西方语言的识别率很好,而且支持多种西欧语言,产品化程度也很高,不过中文方面速度和识别率还是有差距的,当然这两年人家也是在不断进步。Google的开源项目,至少在中文方面,和这些家相比,各项性能指标水平差距还蛮大的呢。 

作者:张岩
链接:https://www.zhihu.com/question/19593313/answer/14199596
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
https://github.com/cisocrgroup
目前看到最棒的免费的API  当然也提供商业版

OCR Databases

OTHERS

Discussion and Feedback

欢迎扫码加入 参与讨论分享 过期请添加个人微信 edwin_whs

Issues
  • 关于生成文本行数据的问题

    关于生成文本行数据的问题

    楼主,你用于生成文本行的语料库是随机生成的汉字吗? 还是自己搜集的? 因为有3000多个汉字+标点字母。 如果要自己搜集,如何保证样本的均衡?

    opened by xiaomaxiao 21
  • CLSTM 安装测试 project 4 notes

    CLSTM 安装测试 project 4 notes

    https://github.com/wanghaisheng/awesome-ocr/projects/4

    项目 
    opened by wanghaisheng 19
  • 基于深度学习的OCR-from 美團技術團隊

    基于深度学习的OCR-from 美團技術團隊

    http://tech.meituan.com/deeplearning_application.html 为了提升用户体验,O2O产品对OCR技术的需求已渗透到上单、支付、配送和用户评价等环节。OCR在美团点评业务中主要起着两方面作用。一方面是辅助录入,比如在移动支付环节通过对银行卡卡号的拍照识别,以实现自动绑卡,又如辅助BD录入菜单中菜品信息。另一方面是审核校验,比如在商家资质审核环节对商家上传的身份证、营业执照和餐饮许可证等证件照片进行信息提取和核验以确保该商家的合法性,比如机器过滤商家上单和用户评价环节产生的包含违禁词的图片。相比于传统OCR场景(印刷体、扫描文档),美团的OCR场景主要是针对手机拍摄的照片进行文字信息提取和识别,考虑到线下用户的多样性,因此主要面临以下挑战:

     成像复杂:噪声、模糊、光线变化、形变;
      文字复杂:字体、字号、色彩、磨损、笔画宽度不固定、方向任意;
     背景复杂:版面缺失,背景干扰。
    

    对于上述挑战,传统的OCR解决方案存在着以下不足:

    通过版面分析(二值化,连通域分析)来生成文本行,要求版面结构有较强的规则性且前背景可分性强(例如文档图像、车牌),无法处理前背景复杂的随意文字(例如场景文字、菜单、广告文字等)。
    通过人工设计边缘方向特征(例如HOG)来训练字符识别模型,此类单一的特征在字体变化,模糊或背景干扰时泛化能力迅速下降。
    过度依赖字符切分的结果,在字符扭曲、粘连、噪声干扰的情况下,切分的错误传播尤其突出。
    

    针对传统OCR解决方案的不足,我们尝试基于深度学习的OCR。

    1. 基于Faster R-CNN和FCN的文字定位

    首先,我们根据是否有先验信息将版面划分为受控场景(例如身份证、营业执照、银行卡)和非受控场景(例如菜单、门头图)。

    对于受控场景,我们将文字定位转换为对特定关键字目标的检测问题。主要利用Faster R-CNN进行检测,如下图所示。为了保证回归框的定位精度同时提升运算速度,我们对原有框架和训练方式进行了微调:

        考虑到关键字目标的类内变化有限,我们裁剪了ZF模型的网络结构,将5层卷积减少到3层。
        训练过程中提高正样本的重叠率阈值,并根据业务需求来适配RPN层Anchor的宽高比。
    

    图4 基于Faster R-CNN的受控场景文字定位

    对于非受控场景,由于文字方向和笔画宽度任意变化,目标检测中回归框的定位粒度不够,我们利用语义分割中常用的全卷积网络(FCN)来进行像素级别的文字/背景标注,如下图所示。为了同时保证定位的精度和语义的清晰,我们不仅在最后一层进行反卷积,而且融合了深层Layer和浅层Layer的反卷积结果 图5 基于FCN的非受控场景文字定位

    1. 基于序列学习框架的文字识别

    为了有效控制字符切分和识别后处理的错误传播效应,实现端到端文字识别的可训练性,我们采用如下图所示的序列学习框架。框架整体分为三层:卷积层,递归层和翻译层。其中卷积层提特征,递归层既学习特征序列中字符特征的先后关系,又学习字符的先后关系,翻译层实现对时间序列分类结果的解码。

    图6 基于序列学习的端到端识别框架

    由于序列学习框架对训练样本的数量和分布要求较高,我们采用了真实样本+合成样本的方式。真实样本以美团点评业务来源(例如菜单、身份证、营业执照)为主,合成样本则考虑了字体、形变、模糊、噪声、背景等因素。基于上述序列学习框架和训练数据,在多种场景的文字识别上都有较大幅度的性能提升,如下图所示。

    图7 深度学习OCR和传统OCR的性能比较

    opened by wanghaisheng 17
  • Scene-Text-Recognition-SSD的前世今生

    Scene-Text-Recognition-SSD的前世今生

    https://github.com/chongyangtao/Awesome-Scene-Text-Recognition

    https://github.com/whitelok/image-text-localization-recognition

    opened by wanghaisheng 11
  • 运用keras,tensorflow实现自然场景文字检测,ctc 实现不定长中文OCR识别

    运用keras,tensorflow实现自然场景文字检测,ctc 实现不定长中文OCR识别

    https://github.com/chineseocr/chinese-ocr 特别棒 看起来

    opened by wanghaisheng 10
  • ctpn 测试

    ctpn 测试

    docker run  --rm -it  -v `pwd`:/opt/ctpn/CTPN/demo_images -p 8888:8888  dc/ctpn 
    
    docker run  --rm -it  -v `pwd`:/opt/ctpn/CTPN/demo_images  dc/ctpn /bin/bash
    [email protected]:/opt/ctpn/CTPN# python tools/demo.py --no-gpu 
    
    opened by wanghaisheng 8
  • Adnan Ul-Hasan的博士论文-第四章 训练数据

    Adnan Ul-Hasan的博士论文-第四章 训练数据

    Benchmark Datasets for OCR Numerous character recognition algorithms require sizable ground-truthed real- world data for training and benchmarking. The quantity and quality of training data directly a ects the generalization accuracy of a trainable OCR model. However, de- veloping GT data manually is overwhelmingly laborious, as it involves a lot of e ort to produce a reasonable database that covers all possible words of a language. Tran- scribing historical documents is even more gruelling as it requires language expertise in addition to manual labelling e orts. The increased human e orts give rise to - nancial aspects of developing such datasets and could restrict the development of large-scale annotated databases for the purpose of OCR. It has been pointed out in the previous chapter that scarcity of training data is one of the limiting factors in de- veloping reliable OCR systems for many historical as well as for some modern scripts. The challenge of limited training data has been overcome by the following contri- butions of this thesis: • Asemi-automatedmethodologytogeneratetheGTdatabaseforcursivescripts at ligature level has been proposed. This methodology can equally be applied to produce character-level GT data. Section 4.2 reports the speci cs of this method for cursive Nabataean scripts. • Synthetically generated text-line databases have been developed to enhance the OCR research. These datasets include a database for Devanagari script (Deva-DB), a subset of printed Polytonic Greek script (Polytonic-DB), and three datasets for Multilingual OCR (MOCR) tasks. Section 4.3 details this process and describes the ne points about these datasets. 4.1 Related Work There are basically two types of methodologies that have been proposed in the liter- ature. The rst is to extract identi able symbols from the document image and apply some clustering methods to create representative prototypes. These prototypes are then assigned text labels. The second approach is to synthesize the document images from the textual data. These images are degraded using various image defect models to re ect the scanning artifacts. These degradation models [Bai92] include resolution, blur, threshold, sensitivity, jitter, skew, size, baseline, and kerning. Some of these artifacts are discussed in Section 4.3 where they are used to generate text-line images from the text. The use of synthesized training data is increasing and there are many datasets re- ported in the literature using this methodology. One dataset that is prominent among these types is the Arabic Printed Text Images (APTI) database, which is proposed by Sli- mane et al. [SIK+09]. This database is synthetically generated covering ten di erent Arabic fonts and as many font-sizes (ranging from 6 to 24). It is generated from vari- ous Arabic sources and contains over 1 million words. The number increases to over 45 million words when rendered using ten fonts, four styles and ten font-sizes. Another example of a synthetic text-line image database is the Urdu Printed Text Images (UPTI) database, published by Sabbour and Shafait [SS13]. This dataset consists of over 10 thousand unique text-lines selected from various sources. Each text-line is rendered synthetically with various degradation parameters. Thus the actual size of the database is quite large. The database contains GT information at both text-line and ligature levels. The second approach in automating the process of generating an OCR database from scanned document images is to nd the alignment of the transcription of the text lines with the document image. Kanungo et al. [KH99] presented a method for generating character GT automatically for scanned documents. A document is rst created electronically using any typesetting system. It is then printed out and scanned. Next, the corresponding feature points from both versions of the same doc- ument are found and the parameters of the transformation are estimated. The ideal GT information is transformed accordingly using these estimates. An improvement in this method is proposed by Kim and Kanungo [KK02] by using an attributed branch- and-bound algorithm. Von Beusekom et al. [vBSB08] proposed a robust and pixel-accurate alignment method. In the rst step, the global transformation parameters are estimated in a similar manner as in [KK02]. In the second step, the adaptation of the smaller region is carried out. Pechwitz et al. [PMM+02] presented the IfN/ENIT database of handwritten Arabic names of cities along with their postal codes. A projection pro le method is used to extract words and the postal codes automatically. Moza ari et al. [MAM+08] devel- oped a similar database (IfN/Farsi-database) for handwritten Farsi (Persian) names of cities. Sagheer et al. [SHNS09] also proposed a similar methodology for generating an Urdu database for handwriting recognition. Vamvakas et al. [VGSP08] proposed that a character database for historical docu- ments may be constructed by choosing a small subset of images and then using char- acter segmentation and clustering techniques. This work is similar to our approach; however, the main di erence is the use of a di erent segmentation technique for Urdu ligatures and the utilization of a dissimilar clustering algorithm.

    论文 
    opened by wanghaisheng 7
  • lable tools

    lable tools

    https://github.com/mingx9527/Data_Label_Tools

    opened by wanghaisheng 0
  • 用于benchmark检测的数据集

    用于benchmark检测的数据集

    opened by wanghaisheng 18
  • 版面分析/版式分析入门

    版面分析/版式分析入门

    https://github.com/tmbdev/teaching-dca Thomas_Breuel 开授的课程 1.转换成pdf 2.pdf转换成html 3.翻译

    opened by wanghaisheng 57
  • ocr commercial solution and prices

    ocr commercial solution and prices

    opened by wanghaisheng 7
  • OCR 讨论群

    OCR 讨论群

    微信群 欢迎扫码加入 参与讨论分享 过期请添加个人微信 edwin_whs

    welcome to add me to join discussion group if you have downloaded Wechat xiaozhushou

    opened by wanghaisheng 3
  • references

    references

    opened by wanghaisheng 57
Owner
wanghaisheng
you can touch me twitter:wanghaisheng wechat:edwin_whs weibo:没心没肺的Edwin
wanghaisheng
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 343 Sep 25, 2021
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 125 Oct 12, 2021
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

null 42.3k Oct 23, 2021
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 102 Aug 20, 2021
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 31 Sep 28, 2021
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

null 17.1k Oct 23, 2021
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 34 Aug 26, 2021
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

null 2.2k Oct 15, 2021
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 35 May 24, 2021
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 349 Oct 5, 2021
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 78 Oct 7, 2021
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 470 Oct 13, 2021
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 835 Oct 20, 2021
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.6k Oct 14, 2021
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 2 Oct 20, 2021
A tool for extracting text from scanned documents (via OCR), with user-defined post-processing.

The project is based on older versions of tesseract and other tools, and is now superseded by another project which allows for more granular control o

Maxim 31 Jul 24, 2021
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.6k Oct 15, 2021
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 5k Oct 23, 2021
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 3.8k Oct 22, 2021