A project studying the influence of communication in multi-objective normal-form games

Overview

Communication in Multi-Objective Normal-Form Games

This repo consists of five different types of agents that we have used in our study of communication in multi-objective normal-form games. The settings that involve communication do this following a leader-follower model as seen in Stackelberg games. In such settings, agents switch in a round-robin fashion between being the leader and communicating something and being the follower and observing the communication.

No communication setting

In this setting two agents play a normal-form game for a certain amount of episodes. This experiment serves as a baseline for all other experiments.

Cooperative action communication setting

In this setting, agents communicate the next action that they will play. The follower uses this message to pre-update their policy. This setting is similar to Iterated Best Response and attempts to find the optimal joint policy.

Competitive action communication setting

This setting places the agents in a more competitive environment. This means that agents learn a specific best-response policy to every possible message. As such, agent's are not optimising for an optimal joint policy, but rather are acting in a self-interested manner.

Cooperative policy communication setting

This setting follows the same dynamics as the cooperative action communication setting, but communicates the entire policy instead of the next action that will be played.

Optional communication setting

The last setting gives agents the chance to learn for themselves whether communication helps them. All agents learn a top-level policy that chooses whether they will communicate when they are the leader or not. They also have two low-level agents, one "no communication agent" and one agent that does communicate. Which agent that is used as the communicating agent, is completely optional. When agents choose to communicate, they utilise their lower level communicating agent. When agents opt out of communication, they utilise their lower level no communication agent.

Getting Started

Experiments can be run from the MONFG.py file. There are 5 MONFGs available, having different equilibria properties under the SER optimisation criterion, using the specified non linear utility functions. You can also specify the type of experiment to run and other parameters.

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details

You might also like...
Normal Learning in Videos with Attention Prototype Network
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

 Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

An implementation of a discriminant function over a normal distribution to help classify datasets.
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Code from the paper
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Learning cell communication from spatial graphs of cells
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Owner
Willem Röpke
Willem Röpke
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

null 34 Nov 9, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 9, 2023
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 7, 2023
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 2, 2023
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

null 1 Nov 3, 2021
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 3, 2023
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

null 77 Dec 24, 2022