SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Overview

Learning to Classify Images without Labels

This repo contains the Pytorch implementation of our paper:

SCAN: Learning to Classify Images without Labels

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans and Luc Van Gool.

  • Accepted at ECCV 2020 (Slides). Watch the explanation of our paper by Yannic Kilcher on YouTube.

  • 🏆 SOTA on 4 benchmarks. Check out Papers With Code for Image Clustering or Unsup. Classification.

  • 🆕 Interested in representation learning on non-curated datasets? Check out our NeurIPS'21 paper and code.

  • 🆕 Interested in unsupervised semantic segmentation? Check out our ICCV'21 paper: MaskContrast.

  • 📜 Looking for influential papers in self-supervised learning? Check out this reading list.

PWC PWC PWC PWC

Contents

  1. Introduction
  2. Prior Work
  3. Installation
  4. Training
  5. Model Zoo
  6. Tutorial
  7. Citation

🆕 Tutorial section has been added, checkout TUTORIAL.md.

🆕 Prior work section has been added, checkout Prior Work.

Introduction

Can we automatically group images into semantically meaningful clusters when ground-truth annotations are absent? The task of unsupervised image classification remains an important, and open challenge in computer vision. Several recent approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled.

We outperform state-of-the-art methods by large margins, in particular +26.6% on CIFAR10, +25.0% on CIFAR100-20 and +21.3% on STL10 in terms of classification accuracy. Our method is the first to perform well on ImageNet (1000 classes). Check out the benchmarks on the Papers-with-code website for Image Clustering and Unsupervised Image Classification.

Prior Work

  • Train set/test set: We would like to point out that most prior work in unsupervised classification use both the train and test set during training. We believe this is bad practice and therefore propose to only train on the train set. The final numbers should be reported on the test set (see table 3 of our paper). This also allows us to directly compare with supervised and semi-supervised methods in the literature. We encourage future work to do the same. We observe around 2% improvement over the reported numbers when including the test set.

  • Reproducibility: We noticed that prior work is very initialization sensitive. So, we don't think reporting a single number is therefore fair. We report our results as the mean and standard deviation over 10 runs.

Please follow the instructions underneath to perform semantic clustering with SCAN.

Installation

The code runs with recent Pytorch versions, e.g. 1.4. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install matplotlib scipy scikit-learn   # For evaluation and confusion matrix visualization
conda install faiss-gpu                       # For efficient nearest neighbors search 
conda install pyyaml easydict                 # For using config files
conda install termcolor                       # For colored print statements

We refer to the requirements.txt file for an overview of the packages in the environment we used to produce our results.

Training

Setup

The following files need to be adapted in order to run the code on your own machine:

  • Change the file paths to the datasets in utils/mypath.py, e.g. /path/to/cifar10.
  • Specify the output directory in configs/env.yml. All results will be stored under this directory.

Our experimental evaluation includes the following datasets: CIFAR10, CIFAR100-20, STL10 and ImageNet. The ImageNet dataset should be downloaded separately and saved to the path described in utils/mypath.py. Other datasets will be downloaded automatically and saved to the correct path when missing.

Train model

The configuration files can be found in the configs/ directory. The training procedure consists of the following steps:

  • STEP 1: Solve the pretext task i.e. simclr.py
  • STEP 2: Perform the clustering step i.e. scan.py
  • STEP 3: Perform the self-labeling step i.e. selflabel.py

For example, run the following commands sequentially to perform our method on CIFAR10:

python simclr.py --config_env configs/your_env.yml --config_exp configs/pretext/simclr_cifar10.yml
python scan.py --config_env configs/your_env.yml --config_exp configs/scan/scan_cifar10.yml
python selflabel.py --config_env configs/your_env.yml --config_exp configs/selflabel/selflabel_cifar10.yml

Remarks

The provided hyperparameters are identical for CIFAR10, CIFAR100-20 and STL10. However, fine-tuning the hyperparameters can further improve the results. We list the most important hyperparameters of our method below:

  • Entropy weight: Can be adapted when the number of clusters changes. In general, try to avoid imbalanced clusters during training.
  • Confidence threshold: When every cluster contains a sufficiently large amount of confident samples, it can be beneficial to increase the threshold. This generally helps to decrease the noise. The ablation can be found in the paper.
  • Number of neighbors in SCAN: The dependency on this hyperparameter is rather small as shown in the paper.

Model Zoo

Pretext tasks

We perform the instance discrimination task in accordance with the scheme from SimCLR on CIFAR10, CIFAR100 and STL10. Pretrained models can be downloaded from the links listed below. On ImageNet, we use the pretrained weights provided by MoCo and transfer them to be compatible with our code repository.

Dataset Download link
CIFAR10 Download
CIFAR100 Download
STL10 Download

Clustering

We provide the following pretrained models after training with the SCAN-loss, and after the self-labeling step. The best models can be found here and we futher refer to the paper for the averages and standard deviations.

Dataset Step ACC NMI ARI Download link
CIFAR10 SCAN-loss 81.6 71.5 66.5 Download
Self-labeling 88.3 79.7 77.2 Download
CIFAR100 SCAN-loss 44.0 44.9 28.3 Download
Self-labeling 50.7 48.6 33.3 Download
STL10 SCAN-loss 79.2 67.3 61.8 Download
Self-labeling 80.9 69.8 64.6 Download
ImageNet-50 SCAN-loss 75.1 80.5 63.5 Download
Self-labeling 76.8 82.2 66.1 Download
ImageNet-100 SCAN-loss 66.2 78.7 54.4 Download
Self-labeling 68.9 80.8 57.6 Download
ImageNet-200 SCAN-loss 56.3 75.7 44.1 Download
Self-labeling 58.1 77.2 47.0 Download

Result ImageNet

We also train SCAN on ImageNet for 1000 clusters. We use 10 clusterheads and finally take the head with the lowest loss. The accuracy (ACC), normalized mutual information (NMI), adjusted mutual information (AMI) and adjusted rand index (ARI) are computed:

Method ACC NMI AMI ARI Download link
SCAN (ResNet50) 39.9 72.0 51.2 27.5 Download

Evaluation

Pretrained models from the model zoo can be evaluated using the eval.py script. For example, the model on cifar-10 can be evaluated as follows:

python eval.py --config_exp configs/scan/scan_cifar10.yml --model $MODEL_PATH 

Visualizing the prototype images is easily done by setting the --visualize_prototypes flag. For example on cifar-10:

Similarly, you might want to have a look at the clusters found on ImageNet (as shown at the top). First download the model (link in table above) and then execute the following command:

python eval.py --config_exp configs/scan/imagenet_eval.yml --model $MODEL_PATH_IMAGENET 

Tutorial

If you want to see another (more detailed) example for STL-10, checkout TUTORIAL.md. It provides a detailed guide and includes visualizations and log files with the training progress.

Citation

If you find this repo useful for your research, please consider citing our paper:

@inproceedings{vangansbeke2020scan,
  title={Scan: Learning to classify images without labels},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Proesmans, Marc and Van Gool, Luc},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2020}
}

For any enquiries, please contact the main authors.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Comments
  • How to start training unlabelled data from scratch

    How to start training unlabelled data from scratch

    Hi, thanks for an amazing paper and code.

    I have a question regarding how to start a brand new dataset with all unlabeled-images.

    I follow your suggestion on other issues, change configs/env.yml, create configs/pretext/simclr_*.yml, update, utils/common_config create new class for custom dataset,

    I wonder how i should deal with the validation step as i dont have any label in place, could i just edit out the val_db_name: in the pretext/yml file or do i need to do other changes. Any advise is greatly appreciated.

    opened by harveyng 9
  • Error: Mask in MaskedCrossEntropyLoss is all zeros

    Error: Mask in MaskedCrossEntropyLoss is all zeros

    I get error in third (self-labeling) step. The error occurs at these lines:

    def forward(self, input, target, mask, weight, reduction='mean'): if not (mask != 0).any(): raise ValueError('Mask in MaskedCrossEntropyLoss is all zeros.')

    Any suggestions?

    opened by arbab97 7
  • pretext + kmeans

    pretext + kmeans

    Hi~ I am following your beautiful work, but I met some questions and hope you can help me.

    I am using your pretext model of cifar10(https://drive.google.com/file/d/1Cl5oAcJKoNE5FSTZsBSAKLcyA5jXGgTT/view) to require the 128-dimension features and run kmeans algorithm, I got very low performance than your paper. (acc: 20% vs 60%). But I first run TSNE on 128-dimension features and got 2-dimension new features and used kmeans algorithm, I got the similar accuracy with your paper. Do you meet the same question?

    opened by mynameischaos 7
  • Cannot run eval using model

    Cannot run eval using model

    Hello,

    First of all thank you for sharing your research to the public. This is interesting work!

    I am new to this and please forgive me if I am asking a simple question.

    I ran your scripts and it all worked as expected. At the end of self-labeling step my result is this

    ... tail end of the results .. Epoch 200/200

    Adjusted learning rate to 0.00010 Train ... Epoch: [199][ 0/50] Loss 7.1724e-02 (7.1724e-02) Epoch: [199][25/50] Loss 5.5752e-02 (6.9237e-02) Evaluate ... {'ACC': 0.8724, 'ARI': 0.751001763292155, 'NMI': 0.7818230363066652, 'ACC Top-5': 0.9878, 'hungarian_match': [(0, 9), (1, 8), (2, 7), (3, 4), (4, 1), (5, 2), (6, 3), (7, 0), (8, 6), (9, 5)]} Checkpoint ... Evaluate model at the end {'ACC': 0.8724, 'ARI': 0.751001763292155, 'NMI': 0.7818230363066652, 'ACC Top-5': 0.9878, 'hungarian_match': [(0, 9), (1, 8), (2, 7), (3, 4), (4, 1), (5, 2), (6, 3), (7, 0), (8, 6), (9, 5)]}

    In my results directory (./results/cifar-10/selflabel/) i have 3 files , checkpoint.pth.tar, confusion_matrix.png and model.pth.tar.

    I tried running 'eval' using this !python3 eval.py --config_exp configs/scan/scan_cifar10.yml --visualize_prototypes --model ./results/cifar-10/selflabel/model.pth.tar but got this error:

    Load model weights ... Traceback (most recent call last): File "eval.py", line 145, in main() File "eval.py", line 52, in main model.load_state_dict(state_dict['model']) KeyError: 'model'

    I tried using the same way from the self-label in the Model zoo google drive share. What am i doing wrong here? I want to see the 'visualize-prototypes' functionality.

    opened by mdtlab200s 7
  • Repro Difficulties

    Repro Difficulties

    Hi,

    I've been trying to reproduce your results as part of something I'm working on. Some have turned out almost identical (CIFAR-10), but I've had a difficultly with CIFAR-20 and STL-10. Basically, I'm unable to exactly match the reported result for SCAN, and for the self-label step it actually causes results to get slightly worse. I've tried to double-check settings; I had originally adjusted things like batch size but I reset those for the most part and there is still some discrepancy.

    Note that I'm training SimCLR from scratch using the code and configs in this repository.

    Do you have any insight as to what may be the cause of this?

    Also, for the ImageNet-50, ImageNet-100, and ImageNet-200 experiments, are you using a MOCO that was trained on all of ImageNet, both train and val? I am not able to come close to your results, but that would make the difference (I had trained a SimCLR on the train portion only of each subset).

    opened by mgwillia 6
  • Number of classes much greater than the number of unique predictions obtained

    Number of classes much greater than the number of unique predictions obtained

    Hi! Hope you are doing well, I enjoyed reading this paper and the code. I was trying to adapt this method to my own task on a custom dataset. Something strange i noticed for my task was:

    Even with a high number of classes given as input to the model, eg. 1024, the predictions produced by the model had only 34 unique values:

    torch.unique(data['predictions']) tensor([ 13, 29, 54, 60, 79, 93, 105, 150, 188, 253, 260, 286, 293, 333, 347, 363, 378, 406, 408, 414, 418, 447, 450, 492, 509, 529, 542, 580, 602, 615, 628, 635, 643, 662, 670, 677, 685, 698, 711, 720, 734, 741, 765, 799, 810, 847, 848, 859, 910, 919, 932, 933])

    Do you think this is possible when faced with a large amount of overclustering?

    Would highly appreciate your input.

    Thank you, Deshana

    opened by deshanadesai 6
  • The Implementation result of pretext task + kmeans

    The Implementation result of pretext task + kmeans

    Hi, Thank for your nice work. It inspired me most. I want to implement the result of pretext task + kmeans on CIFAR10 (65% ACC in paper) First, I download the checkpoint in here: https://drive.google.com/file/d/1Cl5oAcJKoNE5FSTZsBSAKLcyA5jXGgTT/view Then, I add some code in the eval.py as follow:

            print('Fill Memory Bank')
            fill_memory_bank(dataloader, model, memory_bank)
    
            if not args.simclr_kmeans:
                print('Mine the nearest neighbors')
                for topk in [1, 5, 20]: # Similar to Fig 2 in paper
                    _, acc = memory_bank.mine_nearest_neighbors(topk)
                    print('Accuracy of top-{} nearest neighbors on validation set is {:.2f}'.format(topk, 100*acc))
            else:
                head = 0
                print(memory_bank.features.cpu().shape)
                kmeans = KMeans(n_clusters=config['num_classes'], random_state=0).fit(memory_bank.features.cpu())
                kmeans = torch.from_numpy(kmeans.labels_).cuda()
                predictions=[{'predictions':kmeans,'probabilities':1, 'targets':memory_bank.targets}]
                clustering_stats = hungarian_evaluate_me(head, predictions, dataset.classes,
                                                      compute_confusion_matrix=True)
                print(clustering_stats)
    

    But i get the following result, which is far lower than the 65% in paper

    {'ACC': 0.3647, 'ARI': 0.13848755246278868, 'NMI': 0.2627059928586838, 'hungarian_match': [(0, 2), (1, 1), (2, 8), (3, 3), (4, 5), (5, 9), (6, 0), (7, 4), (8, 6), (9, 7)]}
    

    Maybe I make some mistake in the calculation, can you tell me where I am wrong? Great thank for your time!

    opened by forrestsz 6
  • train on custom dataset?

    train on custom dataset?

    Hi, thanks for this great project. I have a dataset with images that show a dotted font on a white background. These images have different kind of artifacts like pollution, scratches, ... often there are also several artifacts in one image. I want to cluster the dataset according to the different kind of artifacts. Do you think this is possible with this code?

    opened by daniiki 6
  • CUDA error while training on new dataset

    CUDA error while training on new dataset

    I was trying to run simclr.py on a custom dataset. I was using colab. The changes I made are:

    • Added custom dataloader file in data/ folder
    • Added new config files in all the three folders inside config/ similar to CIFAR_10
    • Set the target as 255 in the __getitem__ and class as 'unlabeled' as my dataset has no labels
    • Few tweaks in utils/common_config.py

    The code can be found in this repo: https://github.com/k4rth33k/AvantariSolution

    Here are the logs:

    {'setup': 'simclr', 'backbone': 'resnet50', 'model_kwargs': {'head': 'mlp', 'features_dim': 128}, 'train_db_name': 'animals', 'val_db_name': 'animals', 'num_classes': 10, 'criterion': 'simclr', 'criterion_kwargs': {'temperature': 0.1}, 'epochs': 500, 'optimizer': 'sgd', 'optimizer_kwargs': {'nesterov': False, 'weight_decay': 0.0001, 'momentum': 0.9, 'lr': 0.4}, 'scheduler': 'cosine', 'scheduler_kwargs': {'lr_decay_rate': 0.1}, 'batch_size': 512, 'num_workers': 8, 'augmentation_strategy': 'simclr', 'augmentation_kwargs': {'random_resized_crop': {'size': 32, 'scale': [0.2, 1.0]}, 'color_jitter_random_apply': {'p': 0.8}, 'color_jitter': {'brightness': 0.4, 'contrast': 0.4, 'saturation': 0.4, 'hue': 0.1}, 'random_grayscale': {'p': 0.2}, 'normalize': {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2023, 0.1994, 0.201]}}, 'transformation_kwargs': {'crop_size': 32, 'normalize': {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2023, 0.1994, 0.201]}}, 'pretext_dir': '/content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext', 'pretext_checkpoint': '/content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext/checkpoint.pth.tar', 'pretext_model': '/content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext/model.pth.tar', 'topk_neighbors_train_path': '/content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext/topk-train-neighbors.npy', 'topk_neighbors_val_path': '/content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext/topk-val-neighbors.npy'}
    Retrieve model
    Model is ContrastiveModel
    Model parameters: 27.97M
    ContrastiveModel(
      (backbone): ResNet(
        (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
        (layer1): Sequential(
          (0): Bottleneck(
            (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (downsample): Sequential(
              (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (1): Bottleneck(
            (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (2): Bottleneck(
            (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
        )
        (layer2): Sequential(
          (0): Bottleneck(
            (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (downsample): Sequential(
              (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
              (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (1): Bottleneck(
            (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (2): Bottleneck(
            (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (3): Bottleneck(
            (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
        )
        (layer3): Sequential(
          (0): Bottleneck(
            (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (downsample): Sequential(
              (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
              (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (1): Bottleneck(
            (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (2): Bottleneck(
            (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (3): Bottleneck(
            (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (4): Bottleneck(
            (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (5): Bottleneck(
            (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
        )
        (layer4): Sequential(
          (0): Bottleneck(
            (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (downsample): Sequential(
              (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
              (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
          )
          (1): Bottleneck(
            (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
          (2): Bottleneck(
            (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
          )
        )
        (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
        (fc): Identity()
      )
      (contrastive_head): Sequential(
        (0): Linear(in_features=2048, out_features=2048, bias=True)
        (1): ReLU()
        (2): Linear(in_features=2048, out_features=128, bias=True)
      )
    )
    Set CuDNN benchmark
    Retrieve dataset
    Train transforms: Compose(
        RandomResizedCrop(size=(32, 32), scale=(0.2, 1.0), ratio=(0.75, 1.3333), interpolation=PIL.Image.BILINEAR)
        RandomHorizontalFlip(p=0.5)
        RandomApply(
        p=0.8
        ColorJitter(brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[-0.1, 0.1])
    )
        RandomGrayscale(p=0.2)
        ToTensor()
        Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201])
    )
    Validation transforms: Compose(
        CenterCrop(size=(32, 32))
        ToTensor()
        Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201])
    )
    tcmalloc: large alloc 3353354240 bytes == 0x60818000 @  0x7f22e3e8c1e7 0x59221c 0x4cde80 0x566c02 0x5a4df1 0x4dde06 0x5eaed5 0x4dec87 0x5ebb8e 0x50a5aa 0x50c1f4 0x507f24 0x509202 0x594b01 0x54a17f 0x5517c1 0x5a9eec 0x50a783 0x50cfd6 0x507f24 0x509c50 0x50a64d 0x50cfd6 0x509918 0x50a64d 0x50c1f4 0x507f24 0x50b053 0x634dd2 0x634e87 0x63863f
    tcmalloc: large alloc 3353354240 bytes == 0x128e4e000 @  0x7f22e3e8c1e7 0x59221c 0x5eae96 0x4dec87 0x5ebb8e 0x50a5aa 0x50c1f4 0x507f24 0x509202 0x594b01 0x54a17f 0x5517c1 0x5a9eec 0x50a783 0x50cfd6 0x507f24 0x509c50 0x50a64d 0x50cfd6 0x509918 0x50a64d 0x50c1f4 0x507f24 0x50b053 0x634dd2 0x634e87 0x63863f 0x6391e1 0x4b0dc0 0x7f22e3a89b97 0x5b26fa
    Dataset contains 4264/474 train/val samples
    Build MemoryBank
    tcmalloc: large alloc 3353354240 bytes == 0x7f21981fe000 @  0x7f22e3e8c1e7 0x59221c 0x4cde80 0x566c02 0x5a4df1 0x4dde06 0x5eaed5 0x4dec87 0x5ebb8e 0x50a5aa 0x50c1f4 0x507f24 0x509202 0x594b01 0x54a17f 0x5517c1 0x5a9eec 0x50a783 0x50cfd6 0x507f24 0x509c50 0x50a64d 0x50cfd6 0x509918 0x50a64d 0x50c1f4 0x507f24 0x50b053 0x634dd2 0x634e87 0x63863f
    tcmalloc: large alloc 3353354240 bytes == 0x7f20d03fc000 @  0x7f22e3e8c1e7 0x59221c 0x5eae96 0x4dec87 0x5ebb8e 0x50a5aa 0x50c1f4 0x507f24 0x509202 0x594b01 0x54a17f 0x5517c1 0x5a9eec 0x50a783 0x50cfd6 0x507f24 0x509c50 0x50a64d 0x50cfd6 0x509918 0x50a64d 0x50c1f4 0x507f24 0x50b053 0x634dd2 0x634e87 0x63863f 0x6391e1 0x4b0dc0 0x7f22e3a89b97 0x5b26fa
    Retrieve criterion
    Criterion is SimCLRLoss
    Retrieve optimizer
    SGD (
    Parameter Group 0
        dampening: 0
        lr: 0.4
        momentum: 0.9
        nesterov: False
        weight_decay: 0.0001
    )
    No checkpoint file at /content/drive/My Drive/Datasets/AvantariDataset/results/animals/pretext/checkpoint.pth.tar
    Starting main loop
    Epoch 0/500
    ---------------
    Adjusted learning rate to 0.40000
    Train ...
    Epoch: [0][0/8]	Loss 7.0342e+00 (7.0342e+00)
    Fill memory bank for kNN...
    Fill Memory Bank [0/9]
    Evaluate ...
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [32,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [33,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [34,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [35,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [36,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [37,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [38,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [39,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [40,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [41,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [42,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [43,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [44,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [45,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [46,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [47,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [48,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [49,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [50,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [51,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [52,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [53,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [54,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [55,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [56,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [57,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [58,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [59,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [60,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [61,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [62,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [98,0,0], thread: [63,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [0,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [1,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [2,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [3,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [4,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [5,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [6,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [7,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [8,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [9,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [10,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [11,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [12,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [13,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [14,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [15,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [16,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [17,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [18,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [19,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [20,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [21,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [22,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [23,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [24,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [25,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [26,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [27,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [28,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [29,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [30,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [59,0,0], thread: [31,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [0,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [1,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [2,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [3,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [4,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [5,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [6,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [7,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [8,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [9,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [10,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [11,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [12,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [13,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [14,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [15,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [16,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [17,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [18,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [19,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [20,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [21,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [22,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [23,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [24,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [25,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [26,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [27,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [28,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [29,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [30,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [31,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [32,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [33,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [34,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [35,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [36,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [37,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [38,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [39,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [40,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [41,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [42,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [43,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [44,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [45,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [46,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [47,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [48,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [49,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [50,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [51,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [52,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [53,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [54,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [55,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [56,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [57,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [58,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [59,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [60,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [61,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [62,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [124,0,0], thread: [63,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [32,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [33,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [34,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [35,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [36,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [37,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [38,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [39,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [40,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [41,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [42,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [43,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [44,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [45,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [46,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [47,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [48,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [49,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [50,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [51,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [52,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [53,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [54,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [55,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [56,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [57,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [58,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [59,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [60,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [61,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [62,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [85,0,0], thread: [63,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [32,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [33,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [34,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [35,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [36,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [37,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [38,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [39,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [40,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [41,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [42,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [43,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [44,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [45,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [46,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [47,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [48,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [49,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [50,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [51,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [52,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [53,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [54,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [55,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [56,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [57,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [58,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [59,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [60,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [61,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [62,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [63,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [0,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [1,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [2,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [3,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [4,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [5,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [6,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [7,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [8,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [9,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [10,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [11,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [12,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [13,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [14,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [15,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [16,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [17,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [18,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [19,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [20,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [21,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [22,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [23,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [24,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [25,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [26,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [27,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [28,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [29,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [30,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:208: operator(): block: [150,0,0], thread: [31,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
    Traceback (most recent call last):
      File "AvantariSolution/simclr.py", line 153, in <module>
        main()
      File "AvantariSolution/simclr.py", line 119, in main
        top1 = contrastive_evaluate(val_dataloader, model, memory_bank_base)
      File "/usr/local/lib/python3.6/dist-packages/torch/autograd/grad_mode.py", line 15, in decorate_context
        return func(*args, **kwargs)
      File "/content/AvantariSolution/utils/evaluate_utils.py", line 29, in contrastive_evaluate
        top1.update(acc1.item(), images.size(0))
    RuntimeError: CUDA error: device-side assert triggered
    
    opened by k4rth33k 6
  • Settings for full ImageNet (not subset)

    Settings for full ImageNet (not subset)

    Basically the title: I see the settings for SCAN for the subsets. I notice they are all the same. Shall I use the same settings (batch size, LR, entropy weight, etc.) for regular ImageNet in order to reproduce your results? And which MoCo backbone did you originally use- I'm having trouble getting above ~33% with the backbone I found (SimCLR, not MoCo, so I wanted to try yours).

    opened by mgwillia 5
  • First step moco

    First step moco

    Hello, thanks for your excellent work! I use moco.py, but the Accuracy of top-50 nearest neighbors on train/val set is nan. Have you meet this? what can I do to avoid this?

    opened by txw1997 5
  • Solve the bad results caused by data imbalance?

    Solve the bad results caused by data imbalance?

    Dear Writer, Because it is challenging to achieve material balance in practice. Can it solve the bad results caused by data imbalance or what can be improved?

    Thanks Kelly

    opened by kkellyk 0
  • Learned representations after pretext task

    Learned representations after pretext task

    Hi @wvangansbeke. First of all, thank you for your work! I managed to run your program with a custom dataset: however, despite obtaining nearest neighbors that at a naked eye seem 'good', the clustering step is not yielding satisfying results at the moment. I am currently running this step with different hyperparameters that may be more appropriate for my dataset, but I was wondering whether there was a way to retrieve the representation learned through the pretext task; I supposed that I should focus on output = model(input__).view(b, 2, -1) here but I am not sure about it. Could you please provide some clues or insights about it?

    P.s. I checked issue #53 but it was not helpful for my task.

    opened by emessori 2
  • Normalization on custom dataset

    Normalization on custom dataset

    Hello! Thank you for your useful work. I want to apply your model to a new dataset of images: I already made all the config files necessary by 'copying' the ones for ImageNet and modifying them accordingly. However, I am confused about the criteria used here for normalization, since an array for the mean and the standard deviation is provided. How do you retrieved these values? Are they computed w.r.t. the single channel? E.g. from configs/pretext/moco_imagenet50.yml # Transformations transformation_kwargs: crop_size: 224 # maybe this crop size is too small; we'll see. normalize: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] I suppose that the first entry in the mean array 0.485, for example, is computed by taking into account the red channel of each image in the dataset. I want to make sure I am understanding this right so that I can use your code in the best way possible :)

    Thank you and have a great day.

    opened by emessori 0
  • Overcoming uncertainity after scan phase by dynamically lowering accuracy threshold for self-labeling

    Overcoming uncertainity after scan phase by dynamically lowering accuracy threshold for self-labeling

    Hello,

    The first batch in the first epoch usually doesn't have confident enough samples to pass the 0.99 threshold for self-labeling. But if I lower the threshold to 0.9, it negatively effects the performance of the network (I have observed that most of the samples have over 0.99 probability score in the final epochs, but the accuracy is low).

    Do you have any thoughts about progressively increasing the threshold for self-labeling? Or how would you tackle this issue?

    opened by TomasPlachy 0
  • About

    About "Pretext + Kmeans'

    Hi, I see simply 'Pretext + Kmeans' achieves 65.2 on CIFAR10 on average. I download your model and tried it, but it only acquires 33.3%. Can you tell me your settings or something special you used?(I didn't see it in your code)

    opened by fi591 0
Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM DonnĂ©es Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. PrĂ©trait

Achraf Rahouti 3 Nov 30, 2021
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 8, 2023
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

null 37 Dec 4, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 3, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around mAP@23 with TAO test set (based on our estimation).

null 79 Oct 8, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

null 54 Dec 15, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 7, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

null 42 Nov 24, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

null 242 Dec 20, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 5, 2023
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022