Computer Vision and Pattern Recognition, NUS CS4243, 2022

Overview

CS4243_2022

Computer Vision and Pattern Recognition, NUS CS4243, 2022



Cloud Machine #1 : Google Colab (Free GPU)



Cloud Machine #2 : Binder (No GPU)



Local Installation for OSX & Linux

  • Open a Terminal and type
   # Conda installation
   curl https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -o miniconda.sh -J -L -k # Linux
   curl https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o miniconda.sh -J -L -k # OSX
   chmod +x miniconda.sh
   ./miniconda.sh
   source ~/.bashrc

   # Clone GitHub repo
   git clone https://github.com/xbresson/CS4243_2022.git
   cd CS4243_2022

   # Install python libraries
   conda env create -f environment.yml
   source activate deeplearn_course

   # Run the notebooks in Chrome
   jupyter notebook

Local Installation for Windows

   # Install Anaconda 
   https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

   # Open an Anaconda Terminal 
   Go to Application => Anaconda3 => Anaconda Prompt 

   # Install git : Type in terminal
   conda install git 

   # Clone GitHub repo
   git clone https://github.com/xbresson/CS4243_2022.git
   cd CS4243_2022

   # Install python libraries
   conda env create -f environment_windows.yml
   conda activate deeplearn_course

   # Run the notebooks in Chrome
   jupyter notebook







You might also like...
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

[CVPR 2021]
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon Research.

ML for NLP and Computer Vision.
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Computer Vision Script to recognize first person motion, developed as final project for the course
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Owner
Xavier Bresson
Xavier Bresson
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

null 107 Dec 2, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page >> coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page >> coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

null 11 Nov 3, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

null 48 Dec 26, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

null 13.1k Jan 2, 2023