Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Overview

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Official PyTorch Implementation of the paper Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Youcai Zhang, Yuhao Cheng, Xinyu Huang, Fei Wen, Rui Feng, Yaqian Li, Yandong Guo
OPPO Research Institute, Shanghai Jiao Tong University, Fudan University

Abstract

Multi-label learning in the presence of missing labels(MLML) is a challenging problem. Existing methods mainly focus on the design of network structures or training schemes, which increase the complexity of implementation. This work seeks to fulfill the potential of loss function in MLML without increasing the procedure and complexity. Toward this end, we propose two simple yet effective methods via robust loss design based on an observation that a model can identify missing labels during training with a high precision. The first is a novel robust loss for negatives, namely the Hill loss, which re-weights negatives in the shape of a hill to alleviate the effect of false negatives. The second is a self-paced loss correction (SPLC) method, which uses a loss derived from the maximum likelihood criterion under an approximate distribution of missing labels. Comprehensive experiments on a vast range of multi-label image classification datasets demonstrate that our methods can remarkably boost the performance of MLML and achieve new state-of-the-art loss functions in MLML.

Credit to previous work

This repository is built upon the code base of ASL, thanks very much!

Datasets

We construct the training sets of missing labels by randomly dropping positive labels of each training image with different ratios.

samples classes Labels avg. label/img File
COCO-full labels 82,081 80 241,035 2.9 coco_train_full.txt
COCO-75% labels left 82,081 80 181,422 2.2 coco_train_0.75left.txt
COCO-40% labels left 82,081 80 96,251 1.2 coco_train_0.4left.txt
COCO-single label 82,081 80 82,081 1.0 coco_train_singlelabel.txt

Loss Implementation

In this PyTorch file, we provide implementations of our loss functions: Hill and SPLC. The loss functions take logits (predicted logits before sigmoid) and targets as input, and return the loss. Note that SPLC also takes current training epoch as input.

  • class Hill(nn.Module)
  • class SPLC(nn.Module)

Training Code

Training model by selecting different losses:

python train.py --loss Hill --data {path to dataset} --dataset {select training dataset}
python train.py --loss SPLC --data {path to dataset} --dataset {select training dataset}

For example:

python train.py --loss Hill --data '/home/MSCOCO_2014/' --dataset './dataset/coco_train_0.4left.txt'

Validation Code

We provide validation code that reproduces results reported in the paper on MS-COCO:

python validate.py --model_path {path to model to validate} --data {path to dataset}

Citation

  @misc{zhang2021simple,
        title={Simple and Robust Loss Design for Multi-Label Learning with Missing Labels}, 
        author={Youcai Zhang and Yuhao Cheng and Xinyu Huang and Fei Wen and Rui Feng and Yaqian Li and Yandong Guo},
        year={2021},
        eprint={2112.07368},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }
You might also like...
 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Official code of ICCV2021 paper
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

Python package for missing-data imputation with deep learning
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Owner
Xinyu Huang
Xinyu Huang
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

null 52 Nov 20, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 3, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

null 13 Dec 22, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

null 99 Dec 27, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

null 42 Nov 14, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group -  email: czhu@bupt.edu.cn 22 Dec 23, 2022
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 83 May 11, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 7, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 1, 2022