Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021]
Official code to reproduce the results and data presented in the paper Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style.
Numerical data
To train:
> python main_mlp.py --style-change-prob 0.75 --statistical-dependence --content-dependent-style
To evaluate:
> python main_mlp.py --style-change-prob 0.75 --statistical-dependence --content-dependent-style --evaluate
Causal3DIdent Dataset
You can access the dataset here. The training and test datasets consists of 250000 and 25000 samples, respectively.
High-dimensional images: Causal3DIdent
To train:
> python main_3dident.py --offline-dataset OFFLINE_DATASET --apply-random-crop --apply-color-distortion
To evaluate:
> python main_3dident.py --offline-dataset OFFLINE_DATASET --apply-random-crop --apply-color-distortion --evaluate
BibTeX
@inproceedings{vonkugelgen2021self,
title={Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style},
author={von Kügelgen, Julius and Sharma, Yash and Gresele, Luigi and Brendel, Wieland and Schölkopf, Bernhard and Besserve, Michel and Locatello, Francesco},
booktitle={Advances in Neural Information Processing Systems},
year={2021}
}
Acknowledgements
This repository builds on the following codebase.