Human Dynamics from Monocular Video with Dynamic Camera Movements

Overview

Human Dynamics from Monocular Video with Dynamic Camera Movements

Ri Yu, Hwangpil Park and Jehee Lee

Seoul National University

ACM Transactions on Graphics, Volume 40, Number 6, Article 208. (SIGGRAPH Asia 2021)

Teaser Image

Abstract

We propose a new method that reconstructs 3D human motion from in-the wild video by making full use of prior knowledge on the laws of physics. Previous studies focus on reconstructing joint angles and positions in the body local coordinate frame. Body translations and rotations in the global reference frame are partially reconstructed only when the video has a static camera view. We are interested in overcoming this static view limitation to deal with dynamic view videos. The camera may pan, tilt, and zoom to track the moving subject. Since we do not assume any limitations on camera movements, body translations and rotations from the video do not correspond to absolute positions in the reference frame. The key technical challenge is inferring body translations and rotations from a sequence of 3D full-body poses, assuming the absence of root motion. This inference is possible because human motion obeys the law of physics. Our reconstruction algorithm produces a control policy that simulates 3D human motion imitating the one in the video. Our algorithm is particularly useful for reconstructing highly dynamic movements, such as sports, dance, gymnastics, and parkour actions.

Requirements

  • Ubuntu (tested on 18.04 LTS)

  • Python 3 (tested on version 3.6+)

  • Dart (modified version, see below)

  • Fltk 1.3.4.1

Installation

Dart

sudo apt install libeigen3-dev libassimp-dev libccd-dev libfcl-dev libboost-regex-dev libboost-system-dev libopenscenegraph-dev libnlopt-dev coinor-libipopt-dev libbullet-dev libode-dev liboctomap-dev libflann-dev libtinyxml2-dev liburdfdom-dev doxygen libxi-dev libxmu-dev liblz4-dev
git clone https://github.com/hpgit/dart-ltspd.git
cd dart-ltspd
mkdir build
cd build
cmake ..
make -j4
sudo make install

Pydart

sudo apt install swig

after virtual environment(venv) activates,

source venv/bin/activate
git clone https://github.com/hpgit/pydart2.git
cd pydart2
pip install pyopengl==3.1.0 pyopengl-accelerate==3.1.0
python setup.py build
python setup.py install

Fltk and Pyfltk

sudo apt install libfltk1.3-dev

Download pyfltk

cd ~/Downloads
tar xzf pyFltk-1.3.4.1_py3.tar
cd pyFltk-1.3.4.1_py3
python setup.py build
python setup.py install

misc

pip install pillow cvxopt scipy
cd PyCommon/modules/GUI
sudo apt install libgle3-dev

Run examples

source venv/bin/activate
export PYTHONPATH=$PWD
cd control/parkour1
python3 render_parkour1.py

Bibtex

@article{Yu:2021:MovingCam,
    author = {Yu, Ri and Park, Hwangpil and Lee, Jehee},
    title = {Human Dynamics from Monocular Video with Dynamic Camera Movements},
    journal = {ACM Trans. Graph.},
    volume = {40},
    number = {6},
    year = {2021},
    articleno = {208}
}
You might also like...
 PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

Towards Multi-Camera 3D Human Pose Estimation in Wild Environment
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Code for
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

 Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Comments
  • make error - nlopt.hpp: No Such file or directory

    make error - nlopt.hpp: No Such file or directory

    Hi, I am following the installation instructions using UBUNTU running on wsl on windows 10. I run the command ''$ make -j4" and get the error below.


    [ 70%] Built target dart-optimizer-ipopt [ 71%] Building CXX object dart/optimizer/nlopt/CMakeFiles/dart-optimizer-nlopt.dir/NloptSolver.cpp.o In file included from /home/rr/DynMo/dart-ltspd/dart/optimizer/nlopt/NloptSolver.cpp:35: /home/rr/DynMo/dart-ltspd/dart/optimizer/nlopt/NloptSolver.hpp:36:10: fatal error: nlopt.hpp: No such file or directory 36 | #include <nlopt.hpp> | ^~~~~~~~~~~ compilation terminated. make[2]: *** [dart/optimizer/nlopt/CMakeFiles/dart-optimizer-nlopt.dir/build.make:63: dart/optimizer/nlopt/CMakeFiles/dart-optimizer-nlopt.dir/NloptSolver.cpp.o] Error 1 make[1]: *** [CMakeFiles/Makefile2:2273: dart/optimizer/nlopt/CMakeFiles/dart-optimizer-nlopt.dir/all] Error 2 make: *** [Makefile:141: all] Error 2

    Any assistance is appreciated.

    opened by Rahmyyy 2
  • Is it possible to use this repo with a Windows 10 machine?

    Is it possible to use this repo with a Windows 10 machine?

    I'm trying to get this repo to work with my Windows 10 machine and was wondering what limitations I might face and if anyone has any recommendations?

    Thank you for making this awesome repo public, such amazing work!

    opened by torrinworx 1
  • dart-ltspd can not be built

    dart-ltspd can not be built

    CMake Error at examples/deprecated_examples/glut_human_joint_limits/CMakeLists.txt:43 (endif):
      Flow control statements are not properly nested.
    

    Can u please add anothe fork for these thirdparty dependencies, they always change API can break this repo's build which is really annoying.

    For newcomer users can be very confused by these errros.

    opened by jinfagang 1
  • .skmo format specifications

    .skmo format specifications

    As I understand .skmo contains the data converted from the VIBE output. I was not able to find any related scripts or descriptions of how it's done. Would be great to have some details about it. Thanks!

    opened by Dene33 1
Owner
null
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 1, 2023
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 3, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 2, 2021
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

null 2 Jan 5, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 6, 2023