==> Vocab: {'A': 0, 'AACHEN': 1, 'AB': 2, 'AB-JETZT': 3, 'AB-PLUSPLUS': 4, 'ABEND': 5, 'ABER': 6, 'ABFALLEN': 7, 'ABSCHIED': 8, 'ABSCHNITT': 9, 'ABSINKEN': 10, 'ABWECHSELN': 11, 'ACH': 12, 'ACHT': 13, 'ACHTE': 14, 'ACHTHUNDERT': 15, 'ACHTUNG': 16, 'ACHTZEHN': 17, 'ACHTZIG': 18, 'AEHNLCH': 19, [...]
==> Vocab size: 1232
==> Dataset size: 5672
==> #params: 20991366
Train: 1/30: 0%| | 0/709 [00:00<?, ?it/s]/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /opt/conda/conda-bld/pytorch_1623448272031/work/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchzq/runners/legacy.py:68: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.
args.grad_clip_thres,
Train: 1/30: 16%|█████████████████████████████▍ | 112/709 [03:25<18:14, 1.83s/it]
╰, iteration: 112
╰, ctc_loss: 6.686
╰, rif_loss: -10.14
╰, ent_loss: -0.01603
╰, bsl_loss: 40.41
╰, grad_norm: 19.87
╰, lr: 0.0001
Traceback (most recent call last):
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/jygim/Workspace/stochastic-cslr/stochastic_cslr/runner.py", line 183, in
torchzq.start(Runner)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/zouqi/core.py", line 206, in start
for key, value in vars(command_args).items()
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchzq/runners/legacy.py", line 80, in train
super().train(**kwargs)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchzq/runners/base.py", line 326, in train
for batch in pbar:
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/tqdm/std.py", line 1185, in iter
for obj in iterable:
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 521, in next
data = self._next_data()
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 561, in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/phoenix_datasets/datasets.py", line 96, in getitem
frames = np.stack(list(frames))
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 60, in call
img = t(img)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 297, in forward
return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchvision/transforms/functional.py", line 401, in resize
return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/torchvision/transforms/functional_pil.py", line 241, in resize
return img.resize(size[::-1], interpolation)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/PIL/Image.py", line 1982, in resize
self.load()
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/PIL/ImageFile.py", line 274, in load
raise_oserror(err_code)
File "/home/jygim/miniconda3/envs/scslr/lib/python3.6/site-packages/PIL/ImageFile.py", line 67, in raise_oserror
raise OSError(message + " when reading image file")
OSError: broken data stream when reading image file
Thank you. Regards