TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

Overview

TextBoxes: A Fast Text Detector with a Single Deep Neural Network

Introduction

This paper presents an end-to-end trainable fast scene text detector, named TextBoxes, which detects scene text with both high accuracy and efficiency in a single network forward pass, involving no post-process except for a standard nonmaximum suppression. For more details, please refer to our paper.

Citing TextBoxes

Please cite TextBoxes in your publications if it helps your research:

@inproceedings{LiaoSBWL17,
  author    = {Minghui Liao and
               Baoguang Shi and
               Xiang Bai and
               Xinggang Wang and
               Wenyu Liu},
  title     = {TextBoxes: {A} Fast Text Detector with a Single Deep Neural Network},
  booktitle = {AAAI},
  year      = {2017}
}

Contents

  1. Installation
  2. Download
  3. Test
  4. Train
  5. Performance

Installation

  1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT
git clone https://github.com/MhLiao/TextBoxes.git

cd TextBoxes

make -j8

make py

Download

  1. Models trained on ICDAR 2013: Dropbox link BaiduYun link
  2. Fully convolutional reduced (atrous) VGGNet: Dropbox link BaiduYun link
  3. Compiled mex file for evaluation(for multi-scale test evaluation: evaluation_nms.m): Dropbox link BaiduYun link

Test

  1. Download the ICDAR 2013 DataSet
  2. Download the Models trained on ICDAR 2013
  3. Modify the related paths in the "examples/TextBoxes/test_icdar13.py"
  4. run "python examples/test_icdar13.py"
  5. To multi-scale test, you should use "test_icdar13_multi_scale.py" and "evaluation_nms.m"

Train

  1. Train about 50k iterions on Synthetic data which refered in the paper.
  2. Train about 2k iterions on corresponding training data such as ICDAR 2013 and SVT.
  3. For more information, such as learning rate setting, please refer to the paper.

Performance

  1. Using the given test code, you can achieve an F-measure of about 80% on ICDAR 2013 with a single scale.
  2. Using the given multi-scale test code, you can achieve an F-measure of about 85% on ICDAR 2013 with a non-maximum suppression.
  3. More performance information, please refer to the paper and Task1 and Task4 of Challenge2 on the ICDAR 2015 website: http://rrc.cvc.uab.es/?ch=2&com=evaluation

Please let me know if you encounter any issues.

You might also like...
A tensorflow implementation of EAST text detector
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

Implementation of EAST scene text detector in Keras
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network

FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a

TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

Comments
  • 关于环境配置的问题

    关于环境配置的问题

    作者您好,想请教您,关于您运行的环境配置问题,您可以介绍一下吗?我看您的note里面写“在100的服务器上用nvidia-docker从镜像gds/keras-th-tf-opencv中新建了caffe_ys容器。按照caffe的依赖文件,并编译GPU版本。”不太明白具体该如何操作,是Windows系统下的caffe编译配置吗?可以留下您的联系方式向您请教吗?

    opened by Vivianwxf 0
Owner
zhangjing1
zhangjing1
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

null 11.4k Jan 2, 2023
huoyijie 1.2k Dec 29, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 5, 2023
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 5, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 7, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

null 27 Jan 8, 2023